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Today’s Class

• The building blocks: The basics of mathematical 
statistics:
➢ Random variables: definitions and types
➢ Univariate distributions

 General terminology
 Univariate normal (aka, Gaussian)
 Other popular (continuous) univariate distributions

➢ Types of distributions: marginal, conditional, and joint
➢ Expected values: means, variances, and the algebra of 

expectations
➢ Linear combinations of random variables

• The finished product: How the general linear model 
fits with these technical specifications
➢ The GLM with the normal distribution
➢ The statistical assumptions of the GLM
➢ How to assess these assumptions
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RANDOM VARIABLES 
AND STATISTICAL DISTRIBUTIONS
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Random Variables

Random: situations in which the certainty of the outcome is 
unknown and is at least in part due to chance

+

Variable: a value that may change given the scope of a given 
problem or set of operations

=

Random Variable: a variable whose outcome depends on chance

(possible values might represent the possible outcomes of a yet-
to-be-performed experiment)

Today we will denote a random variable with a lower-cased: 

𝑥
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Types of Random Variables

• Random variables have different types:

1. Continuous
➢Examples of continuous random variables: 

 𝑥 represents the height of a person, drawn at random
𝑌𝑝 (the outcome/DV in a GLM)

2. Discrete (also called categorical, generally)
➢ Example of discrete: 

 𝑥 represents the gender of a person, drawn at random

3. Mixture of Continuous and Discrete:
➢ Example of mixture:

 𝑥 represents ቊ
response time (if between 0 and 45 seconds)

0
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Key Features of Random Variables

• Random variables each are described by a probability density/mass 
function (PDF) 𝑓(𝑥) that indicates relative frequency of occurrence

➢ A PDF is a mathematical function that gives a rough picture of the distribution 
from which a random variable is drawn

• The type of random variable dictates the name and nature of 
these functions:

➢ Continuous random variables: 
 𝑓(𝑥) is called a probability density function

 Area under curve must equal 1 (found by calculus – integration)

 Height of curve (the function value 𝑓 𝑥 ):
– Can be any positive number 

– Reflects relative likelihood of an observation occurring 

➢ Discrete random variables:
 𝑓(𝑥) is called a probability mass function

 Sum across all values must equal 1

 The function value 𝑓(𝑥) is a probability (so must range from 0 to 1)
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Other Key Terms

• The sample space is the set of all values that a random 
variable 𝑥 can take:

➢ The sample space for a random variable 𝑥 from a normal distribution 
(𝑥 ∼ 𝑁 𝜇𝑥, 𝜎𝑥

2 ) is −∞, ∞  (all real numbers)

➢ The sample space for a random variable 𝑥 representing the outcome of a coin 
flip is 𝐻, 𝑇

➢ The sample space for a random variable 𝑥 representing the outcome of a roll 
of a die is {1, 2, 3, 4, 5, 6}

• When using generalized models, the trick is to pick a 
distribution with a sample space that matches the range of 
values obtainable by data
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Uses of Distributions in Data Analysis

• Statistical models make distributional assumptions on various 
parameters and/or parts of data

• These assumptions govern:
➢ How models are estimated

➢ How inferences are made

➢ How missing data may be imputed

• If data do not follow an assumed distribution, inferences 
may be inaccurate

➢ Likely a very big problem (with a few notable exceptions)

• Therefore, it can be helpful to check distributional assumptions prior 
to (or while) running statistical analyses 
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CONTINUOUS UNIVARIATE DISTRIBUTIONS
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Continuous Univariate Distributions

• To demonstrate how continuous distributions work and 
look, we will discuss three:

➢ Uniform distribution

➢ Normal distribution

➢ Chi-square distribution

• Each are described a set of parameters, which we will later 
see are what give us our inferences when we analyze data

• What we then do is put constraints on those parameters 
based on hypothesized effects in data
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Uniform Distribution

• The uniform distribution is shown to help set up how 
continuous distributions work

• For a continuous random variable 𝑥 that ranges from 
𝑎, 𝑏 , the uniform probability density function is:

𝑓 𝑥 =
1

𝑏 − 𝑎

• The uniform distribution has 
two parameters: 
➢ 𝑎 – the lower limit
➢ 𝑏 – the upper limit

• 𝑥 ∼ 𝑈 𝑎, 𝑏
PSQF 7375: Technical Prerequisites 



More on the Uniform Distribution

• To demonstrate how PDFs work, we will try a few values:

• The uniform PDF has the feature that all values of 𝑥 are 
equally likely across the sample space of the distribution
➢ Therefore, you do not see 𝑥 in the PDF 𝑓 𝑥

• The mean of the uniform distribution is 
1

2
(𝑎 + 𝑏)

• The variance of the uniform distribution is 
1

12
𝑏 − 𝑎 2
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𝒙 𝒂 𝒃 𝒇(𝒙)

.5 0 1 1

1 − 0
= 1

.75 0 1 1

1 − 0
= 1

15 0 20 1

20 − 0
= .05

15 10 20 1

20 − 10
= .1



Univariate Normal Distribution

• For a continuous random variable 𝑥 (ranging from −∞ to ∞) the 
univariate normal distribution function is:

𝑓 𝑥 =
1

2𝜋𝜎𝑥
2

exp −
𝑥 − 𝜇𝑥

2

2𝜎𝑥
2

• The shape of the distribution is governed by two parameters:
➢ The mean 𝜇𝑥
➢ The variance 𝜎𝑥

2

➢ These parameters are called sufficient statistics (they contain all the information about 
the distribution)

• The skewness (lean) and kurtosis (peakedness) are fixed

• Standard notation for normal distributions is 𝑥 ∼ 𝑁(𝜇𝑥, 𝜎𝑥
2)

➢ Read as: “𝑥 follows a normal distribution with a mean 𝜇𝑥 and a variance 𝜎𝑥
2”

• Linear combinations of random variables following normal distributions 
result in a random variable that is normally distributed
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Univariate Normal Distribution
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𝑓
(𝑥

)

𝑓 𝑥  gives the height of the curve (relative frequency) for any value of 𝑥, 𝜇𝑥, and 𝜎𝑥
2



More of the Univariate Normal Distribution

• To demonstrate how the normal distribution works, we 
will try a few values:

• The values from 𝑓 𝑥  were obtained by using Excel 
➢ The “=normdist()” function
➢ Most statistics packages have a normal distribution function

 In R you can use the dnorm() function

• The mean of the normal distribution is 𝜇𝑥

• The variance of the normal distribution is 𝜎𝑥
2
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𝒙 𝝁𝒙 𝝈𝒙
𝟐 𝒇(𝒙)

.5 0 1 0.352

.75 0 1 0.301

.5 0 5 0.079

.75 -2 1 0.009

-2 -2 1 0.399



Chi-Square Distribution

• Another frequently used univariate distribution is the 
Chi-Square distribution 

➢ Sampling distribution of the variance follows a chi-square distribution

➢ Likelihood ratios follow a chi-square distribution

• For a continuous random variable 𝑥 (ranging from 0 to ∞), the 
chi-square distribution is given by: 

𝑓 𝑥 =
1

2
𝜈
2Γ

𝜈
2

𝑥
𝜈
2

−1 exp −
𝑥

2

• Γ ∙  is called the gamma function

• The chi-square distribution is governed by one parameter: 𝜈 
(the degrees of freedom)

➢ The mean is equal to 𝜈; the variance is equal to 2𝜈

PSQF 7375: Technical Prerequisites 



(Univariate) Chi-Square Distribution
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𝑥

𝑓(𝑥)



MARGINAL, JOINT, AND 
CONDITIONAL DISTRIBUTIONS
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Moving from One to Multiple Random Variables

• When more than one random variable is present, there are 
several different types of statistical distributions:

• We will first consider two discrete random variables: 
➢ 𝑥 is the outcome of the flip of a penny (𝐻𝑝, 𝑇𝑝)

 𝑓 𝑥 = 𝐻𝑝 = .5 ; 𝑓 𝑥 = 𝑇𝑝 = .5
➢ 𝑧 is the outcome of the flip of a dime 𝐻𝑑 , 𝑇𝑑

 𝑓 𝑧 = 𝐻𝑑 = .5 ; 𝑓 𝑧 = 𝑇𝑑 = .5

• We will consider the following distributions:
➢ Marginal distribution

 The distribution of one variable only (either 𝑓(𝑥) or 𝑓(𝑧))

➢ Joint distribution
 𝑓(𝑥, 𝑧): the distribution of both variables (both 𝑥 and 𝑧)

➢ Conditional distribution
 The distribution of one variable, conditional on values of the other:

– 𝑓 𝑥 𝑧 : the distribution of 𝑥 given 𝑧
– 𝑓 𝑧 𝑥 : the distribution of 𝑧 given 𝑥
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Marginal Distributions

• Marginal distributions are what we have worked with 
exclusively up to this point: they represent the distribution 
of one variable by itself

➢ Continuous univariate distributions: 
 Uniform 

 Normal

 Chi-square

➢ Categorical distributions in our example: 
 The flip of a penny 𝑓 𝑥

 The flip of a dime 𝑓(𝑧)
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Joint Distributions

• Joint distributions describe the distribution of more than one 
variable, simultaneously

➢ Representations of multiple variables collected 

• Commonly, the joint distribution function is denoted with all 
random variables separated by commas

➢ In our example, 𝑓 𝑥, 𝑧  is the joint distribution of the outcome of flipping both 
a penny and a dime

 As both are discrete, the joint distribution has four possible values:

𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝐻𝑑 , 𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝑇𝑑 , 𝑓 𝑥 = 𝑇𝑝, 𝑧 = 𝐻𝑑 , 𝑓 𝑥 = 𝑇𝑝, 𝑧 = 𝑇𝑑

• Joint distributions are multivariate distributions

• We will use joint distributions to introduce two topics
➢ Joint distributions of independent variables 
➢ Joint likelihoods – used in maximum likelihood estimation
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Joint Distributions of Independent Random Variables

• Random variables are said to be independent if the occurrence of 
one event makes it neither more nor less probable of another event

➢ For joint distributions, this means: 𝑓 𝑥, 𝑧 = 𝑓 𝑥 𝑓 𝑧

• In our example, flipping a penny and flipping a dime are independent 
– so we can complete the following table of 
their joint distribution:
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𝒛 = 𝑯𝒅 𝒛 = 𝑻𝒅

𝑥 = 𝐻𝑝 𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝐻𝑑 𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝑇𝑑 𝑓(𝑥 = 𝐻𝑝)

𝑥 = 𝑇𝑝 𝑓 𝑥 = 𝑇𝑝, 𝑧 = 𝐻𝑑 𝑓 𝑥 = 𝑇𝑝, 𝑧 = 𝑇𝑑 𝑓(𝑥 = 𝑇𝑑)

𝑓 𝑧 = 𝐻𝑑 𝑓(𝑧 = 𝑇𝑑)

Penny

Dime

Marginal 
(Penny)

Marginal 
(Dime)

Joint
(Penny, Dime)



Joint Distributions of Independent Random Variables

• Because the coin flips are independent, this becomes:

• Then, with numbers:
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𝒛 = 𝑯𝒅 𝒛 = 𝑻𝒅

𝑥 = 𝐻𝑝 𝑓 𝑥 = 𝐻𝑝)𝑓(𝑧 = 𝐻𝑑 𝑓 𝑥 = 𝐻𝑝)𝑓(𝑧 = 𝑇𝑑 𝑓(𝑥 = 𝐻𝑝)

𝑥 = 𝑇𝑝 𝑓 𝑥 = 𝑇𝑝)𝑓(𝑧 = 𝐻𝑑 𝑓 𝑥 = 𝑇𝑝)𝑓(𝑧 = 𝑇𝑑 𝑓(𝑥 = 𝑇𝑑)

𝑓 𝑧 = 𝐻𝑑 𝑓(𝑧 = 𝑇𝑑)

Penny

Dime

Marginal 
(Penny)

Marginal 
(Dime)

Joint
(Penny, Dime)

𝒛 = 𝑯𝒅 𝒛 = 𝑻𝒅

𝑥 = 𝐻𝑝 .25 .25 .5

𝑥 = 𝑇𝑝 .25 .25 .5

.5 .5

Penny

Dime

Marginal 
(Penny)

Marginal 
(Dime)

Joint
(Penny, Dime)



Marginalizing Across a Joint Distribution

• If you had a joint distribution, 𝑓(𝑥, 𝑧), but wanted the marginal 
distribution of either variable (𝑓 𝑥  or 𝑓(𝑧)) you would have to 
marginalize across one dimension of the joint distribution

• For categorical random variables, marginalize = sum across

𝑓 𝑥 = ෍

𝑧

𝑓 𝑥, 𝑧

➢ For example 𝑓 𝑥 = 𝐻𝑝 = 𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝐻𝑝 + 𝑓 𝑥 = 𝐻𝑝, 𝑧 = 𝑇𝑝 = .5

• For continuous random variables, marginalize = integrate across
➢ No integration needed from you – just a conceptual understanding
➢ Here, the integral = an eraser!

𝑓 𝑥 = න
𝑧

𝑓 𝑥, 𝑧 𝑑𝑧
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Conditional Distributions

• For two random variables 𝑥 and 𝑧, a conditional distribution is 
written as: 𝑓 𝑧 𝑥

➢ The distribution of 𝑧 given 𝑥

• The conditional distribution is also equal to the joint distribution 
divided by the marginal distribution of the conditioning 
random variable

𝑓 𝑧 𝑥 =
𝑓(𝑧, 𝑥)

𝑓(𝑥)

• Conditional distributions are found everywhere in statistics
➢ The general linear model uses the conditional distribution of the dependent 

variable (where the independent variables are the conditioning variables)
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Conditional Distributions

• For discrete random variables, the conditional distribution can be 
shown in a contingency table:
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𝒛 = 𝑯𝒅 𝒛 = 𝑻𝒅

𝑥 = 𝐻𝑝 .25 .25 .5

𝑥 = 𝑇𝑝 .25 .25 .5

.5 .5

Penny

Dime

Marginal 
(Penny)

Marginal 
(Dime)

Joint
(Penny, Dime)

Conditional: 𝒇 𝒛 𝒙 = 𝑯𝒑 :

𝑓 𝑧 = 𝐻𝑑 𝑥 = 𝐻𝑝 =
𝑓 𝑧 = 𝐻𝑑, 𝑥 = 𝐻𝑝

𝑓 𝑥 = 𝐻𝑝

=
.25

.5
= .5

𝑓 𝑧 = 𝑇𝑑 𝑥 = 𝐻𝑝 =
𝑓 𝑧 = 𝑇𝑑, 𝑥 = 𝐻𝑝

𝑓 𝑥 = 𝐻𝑝

=
.25

.5
= .5 We will show a continuous 

conditional distribution with 
the GLM in a few slides



EXPECTED VALUES AND THE ALGEBRA OF 
EXPECTATIONS
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Expected Values

• Expected values are statistics taken the sample space of a random 
variable: they are essentially weighted averages

• The weights used in computing this average correspond to the 
probabilities (for a discrete random variable) or to the densities 
(for a continuous random variable).

• Notation: the expected value is represented by: 𝐸(𝑥)
➢ The actual statistic that is being weighted by the PDF is put into the 

parentheses where 𝑥 is now

• Expected values allow us to understand what a statistical model 
implies about data, for instance:

➢ How a GLM specifies the (conditional) mean and variance of a DV
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Expected Value Calculation

• For discrete random variables, the expected value is found by:

𝐸 𝑥 = ෍

𝑥

𝑥𝑃(𝑋 = 𝑥)

• For example, the expected value of a roll of a die is:

𝐸 𝑥 = 1
1

6
+ 2

1

6
+ 3

1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
= 3.5

• For continuous random variables, the expected value is found by:

𝐸 𝑥 = න
𝑥

𝑥𝑓 𝑥 𝑑𝑥

• We won’t be calculating theoretical expected values with 
calculus…we use them only to see how models imply things about 
our data
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Variance and Covariance…As Expected Values

• A distribution’s theoretical variance can also be written as an 
expected value:

𝑉 𝑥 = 𝐸 𝑥 − 𝐸 𝑥
2

= 𝐸 𝑥 − 𝜇𝑥
2

➢ This formula will help us understand predictions made GLMs and how that 
corresponds to statistical parameters we interpret

• For a roll of a die, the theoretical variance is:

𝑉 𝑥 = 𝐸 𝑥 − 3.5 2 =
1

6
1 − 3.5 2 +

1

6
2 − 3.5 2 +

1

6
3 − 3.5 2 +

1

6
4 − 3.5 2 +

1

6
5 − 3.5 2 +

1

6
6 − 3.5 2 = 2.92

➢ Likewise, the SD is then 2.92 = 1.71

• Likewise, for a pair of random variables 𝑥 and 𝑧, the covariance can 
be found from their joint distributions:

𝐶𝑜𝑣 𝑥, 𝑧 = 𝐸 𝑥𝑧 − 𝐸 𝑥 𝐸 𝑧 = 𝐸 𝑥𝑧 − 𝜇𝑥𝜇𝑧
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LINEAR COMBINATIONS OF 
RANDOM VARIABLES
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Linear Combinations of Random Variables

A linear combination is an expression constructed from a set of 
terms by multiplying each term by a constant and then adding the 
results

𝑥 = 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛

➢ The linear regression equation is a linear combination

• More generally, linear combinations of random variables have 
specific implications for the mean, variance, and possibly 
covariance of the new random variable

• As such, there are predicable ways in which the means, variances, 
and covariances change

➢ These terms are called the algebra of expectations

• To guide us through this process, we will use the descriptive 
statistics from the height/weight/gender example
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Descriptive Statistics for Height/Weight Data

Variable Mean SD Variance

Height 67.9 7.44 55.358

Weight 183.4 56.383 3,179.095

Female 0.5 0.513 0.263
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Correlation
/Covariance

Height Weight Female

Height 55.358 334.832 -2.263

Weight .798 3,179.095 -27.632

Female -.593 -.955 .263

Below Diagonal: 
Correlation

Above Diagonal: 
CovarianceDiagonal: Variance



Algebra of Expectations

Here are some properties of expected values (true for any type of 
random variable): 𝑥 and 𝑧 are random variables, 𝑐 and 𝑑 constants

Sums of Constants:
𝐸 𝑥 + 𝑐 = 𝐸 𝑥 + 𝑐

𝑉 𝑥 + 𝑐 = 𝑉 𝑥
𝐶𝑜𝑣 𝑥 + 𝑐, 𝑧 = 𝐶𝑜𝑣(𝑥, 𝑧)

Products of Constants:
𝐸 𝑐𝑥 = 𝑐𝐸 𝑥

𝑉 𝑐𝑥 = 𝑐2𝑉 𝑥
𝐶𝑜𝑣 𝑐𝑥, 𝑑𝑧 = 𝑐𝑑𝐶𝑜𝑣(𝑥, 𝑧)

Sums of Random Variables:
𝐸 𝑐𝑥 + 𝑑𝑧 = 𝑐𝐸 𝑥 + 𝑑𝐸 𝑧

𝑉 𝑐𝑥 + 𝑑𝑧 = 𝑐2𝑉 𝑥 + 𝑑2𝑉 𝑧 + 2𝑐𝑑 𝐶𝑜𝑣 𝑥, 𝑧
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Examples for Algebra of Expectations

• Image you wanted to convert weight from pounds to kilograms (where 
1 pound = 0.453 kg)

𝑊𝑒𝑖𝑔ℎ𝑡𝑘𝑔 = .453𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏

• The mean (expected value) of weight in kg: 

𝐸 𝑊𝑒𝑖𝑔ℎ𝑡𝑘𝑔 = 𝐸 .453𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏 = .453𝐸 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏

= .453𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏 = .453 ∗ 183.4 = 83.08kg

• The variance of weight in kg:

𝑉 𝑊𝑒𝑖𝑔ℎ𝑡𝑘𝑔 = 𝑉 .453𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏 =.4532 𝑉 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏

=.4532∗ 3,179.095 = 652.38𝑘𝑔2

• The covariance of weight in kg with height in inches:

𝐶𝑜𝑣 𝑊𝑒𝑖𝑔ℎ𝑡𝑘𝑔, 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝐶𝑜𝑣 .453𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏, 𝐻𝑒𝑖𝑔ℎ𝑡

= .453𝐶𝑜𝑣 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑏, 𝐻𝑒𝑖𝑔ℎ𝑡 = .453 ∗ 334.832 = 151.68kg ∗ inches
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Don’t Take My Word For It…

R  syntax for transforming weight, marginal descriptive 
statistics, and covariances:
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Where We Use This…The glht() Function from multcomp

• The ghlt() function in the multcomp package computes the expected 
value and standard error (square root of variance) for a new 
random variable

➢ The new random variable is a linear combination of the original model 
parameters (the fixed effects)

➢ The original model parameters are considered “random” here as their 
sampling distribution is used (assuming normal errors and a large N)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 1 ∗ 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 1 ∗ 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4

• Where: 

➢ 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 has mean ෣𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 and variance 𝑠𝑒 ෣𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4
2

➢ 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4has mean ෣𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 and variance 𝑠𝑒 ෣𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4
2

➢ There exists a covariance between ෣𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 and ෣𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 

 We’ll call this 𝐶𝑜𝑣 ෣𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4, ෣𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4
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More ghlt() Fun

• So…if the estimates are:

➢ And 𝐶𝑜𝑣 ෣𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4, ෣𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 = −.08756

…What is:
𝐸 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝐸 1 ∗ 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 1 ∗ 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4

= 1 ∗ 𝐸 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 1 ∗ 𝐸 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 = −.385 − .631 = −1.016

𝑉 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑉 1 ∗ 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 1 ∗ 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4

= 12𝑉 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 12𝑉 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 + 2 ∗ 1 ∗ 1𝐶𝑜𝑣 𝛽𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4, 𝛽𝐺2∗𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒4 =

.2962 +.3912 +2 ∗ .08756 = .0653 

𝑠𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑉 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = .257
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THE GENERAL LINEAR MODEL WITH WHAT WE 
HAVE LEARNED TODAY
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The General Linear Model, Revisited 

• The general linear model for predicting Y from X and Z:
𝑌𝑝 = 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝

In terms of random variables, under the GLM:

• 𝑒𝑝 is considered random: 𝑒𝑝 ∼ 𝑁 0, 𝜎𝑒
2

• 𝑌𝑝 is dependent on the linear combination of 𝑋𝑝, 𝑍𝑝, and 𝑒𝑝

• The GLM provides a model for the conditional distribution of the 
dependent variable, where the conditioning variables are the 
independent variables: 𝑓(𝑌𝑝|𝑋𝑝, 𝑍𝑝)

➢ There are no assumptions made about 𝑋𝑝 and 𝑍𝑝 - they are constants

➢ The regression slopes 𝛽0, 𝛽1, 𝛽2, 𝛽3 are constants that are said to be fixed at 
their values (hence, called fixed effects)
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Combining the GLM with Expectations

• Using the algebra of expectations predicting Y from X and Z: 

The expected value (mean) of 𝒇 𝒀𝒑 𝑿𝒑, 𝒁𝒑 :
෠𝑌𝑝 = 𝐸 𝑌𝑝 = 𝐸 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝

= 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝐸 𝑒𝑝

= 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

The variance of 𝒇 𝒀𝒑 𝑿𝒑, 𝒁𝒑 :

𝑉 𝑌𝑝 = 𝑉 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝 = 𝑉 𝑒𝑝 = 𝜎𝑒
2
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Constants Random 
Variable with 

𝐸 𝑒𝑝 = 0



Distribution of 𝑓 𝑌𝑝 𝑋𝑝, 𝑍𝑝

• We just found the mean (expected value) and variance implied by 
the GLM for the conditional distribution of 𝑌𝑝 given 𝑋𝑝 and 𝑍𝑝

• The next question: what is the distribution of 𝑓 𝑌𝑝 𝑋𝑝, 𝑍𝑝 ?

• Linear combinations of random variables that are normally 
distributed result in variables that are normally distributed

• Because 𝑒𝑝 ∼ 𝑁 0, 𝜎𝑒
2  is the only random term in the GLM, the 

resulting conditional distribution of 𝑌𝑝 is normally distributed:

𝑌𝑝|𝑋𝑝, 𝑍𝑝 ∼ 𝑁 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝, 𝜎𝑒
2
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Model for the means: from fixed 
effects; literally gives mean of 

𝑓 𝑌𝑝 𝑋𝑝, 𝑍𝑝  

Model for the variances:
from random effects; gives 

variance of 𝑓 𝑌𝑝 𝑋𝑝, 𝑍𝑝



Examining What This Means in the Context of Data

• If you recall from the regression analysis of the 
height/weight data, the final model we decided to 
interpret: Model 5

𝑊𝑝 = 𝛽0 + 𝛽1 𝐻𝑝 − ഥ𝐻 + 𝛽2𝐹𝑝 + 𝛽3 𝐻𝑝 − ഥ𝐻 𝐹𝑝 + 𝑒𝑝

where 𝑒𝑝 ∼ 𝑁 0, 𝜎𝑒
2

PSQF 7375: Technical Prerequisites 



Picturing the GLM with Distributions

The distributional assumptions of 
the GLM are the reason why we 
do not need to worry if our 
dependent variable is normally 
distributed

Our dependent variable should be 
conditionally normal

We can check this assumption by 
checking our assumption about 
the residuals, 𝑒𝑝 ∼ 𝑁 0, 𝜎𝑒

2
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More Pictures of the GLM

• Treating our estimated values of the slopes 𝛽0, 𝛽1, 𝛽2, 𝛽3  and the 
residual variance 𝜎𝑒

2  as the true values* we can now see what the 

theoretical* distribution of 𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑝 𝐻𝑒𝑖𝑔ℎ𝑡𝑝, 𝐹𝑒𝑚𝑎𝑙𝑒𝑝  looks 

like for a given set of predictors
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Behind the Pictures…

• To emphasize the point that PDFs provide the height of the line, here is the normal PDF (with 
numbers) that produced those plots:

𝑓 𝑊𝑝 𝐻𝑝, 𝐹𝑝 =
1

2𝜋𝜎𝑒
2

exp −
𝑊𝑝 − ෡𝑊𝑝

2

2𝜎𝑒
2

=
1

2𝜋𝜎𝑒
2

exp −
𝑊𝑝 − 𝛽0 + 𝛽1 𝐻𝑝 − ഥ𝐻 + 𝛽2𝐹𝑝 + 𝛽3 𝐻𝑝 − ഥ𝐻 𝐹𝑝

2

2𝜎𝑒
2

=
1

2𝜋 4.73
exp −

𝑊𝑝 − 222.18 + 3.19 𝐻𝑝 − ഥ𝐻 − 82.27𝐹𝑝 − 1.09 𝐻𝑝 − ഥ𝐻 𝐹𝑝

2

2 4.73

The plots were created using the following value for the predictors:
ഥ𝐻 = 67.9

Left plot: 𝐻𝑝 = 62; 𝐹𝑝 = 1

Right plot: 𝐻𝑝 = 76; 𝐹𝑝 = 0
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Model for the Variance



ASSESSING UNIVARIATE NORMALITY IN R
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Assessing Univariate Normality in SAS

• The assumption of normally distributed residuals permeates GLM
➢ Good news: of all the distributional assumptions, this seems to be the least 

damaging to violate. GLMs are robust to violations of normality.

• Methods exist to examine residuals from an analysis and thereby 
determine the adequacy of a model

➢ Graphical methods: Quantile-Quantile plots 

➢ Hypothesis tests

• Both approaches have problems
➢ Graphical methods do not determine how much deviation is by chance

➢ Hypothesis tests become overly sensitive to small deviations when sample size 
is large (have great power)

• To emphasize how distributions work, we will briefly discuss both
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Assessing Distributional Assumptions Graphically

• A useful tool to evaluate the plausibility of a distributional 
assumption is that of the Quantile versus Quantile Plot 
(more commonly called a Q-Q plot)

• A Q-Q plot is formed by comparing the observed quantiles of a 
variable with that of a known statistical distribution

➢ A quantile is the particular ordering of a given observation
➢ In our data, a person with a height of 71 is the 39th tallest person (out of 50)

➢ This would correspond to the person being at the 
39−.5

50
= .77 or .77 percentile 

of the distribution (taller than 77% of the distribution)
➢ The Q-Q plot then converts the percentile to a quantile using the sample 

mean and variance
 A quantile is the value of an observation at the 77th percentile

• If the data deviate from a straight line, the data are not likely to 
follow from that theoretical distribution
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Q-Q Plots of GLM Residuals

• R has a built-in generic function named plot() that will plot residuals 
from your lm() model:
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If residuals are normally 
distributed, they will fall 
on the line



Example Q-Q Plot of Non-Normal Data
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Hypothesis Tests for Normality
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In practice, test will give diverging information quite frequently:
the best way to evaluate normality is to consider both plots and tests (approximate = good)

If a given test is significant, then it is 
saying that your data do not come 
from a normal distribution



WRAPPING UP
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Wrapping Up

• Today was an introduction to mathematical statistics as a way to 
understand the implications statistical models make about data

• Although many of these topics do not seem directly relevant, they 
help provide insights that untrained analysts may not easily attain

➢ They also help you to understand when and when not to use a model!

• The data methods described in Chapter 3 rely upon many of 
the topics featured in this lecture
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