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Today’s Class

• An introduction to Bayesian statistics:
➢What it is

➢What it does

➢Why people use it

• An introduction to Markov Chain Monte Carlo 
(MCMC estimation)
➢How it works

➢Features to look for when using MCMC

➢Why people use it
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AN INTRODUCTION TO 
BAYESIAN STATISTICS
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Bayesian Statistics: The Basics

• Bayesian statistical analysis refers to the use of models 
where some or all of the parameters are treated as 
random components
➢ Each parameter comes from some type of distribution

• The likelihood function of the data is then augmented with 
an additional term that represents the likelihood of the 
prior distribution for each parameter
➢ Think of this as saying each parameter has a certain likelihood – the 

height of the prior distribution

• The final estimates are then considered summaries of the 
posterior distribution of the parameter, conditional 
on the data
➢ In practice, we use these estimates to make inferences, just as we have 

when using the non-Bayesian approaches we have used throughout 
this class (e.g., maximum likelihood/least squares)
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Bayesian Statistics: Why It Is Used

• Bayesian methods get used because the relative accessibility of one method of 
estimation (MCMC – to be discussed shortly)

• There are four main reasons why people use MCMC:

1. Missing data
➢ Multiple imputation: MCMC is used to estimate model parameters then “impute” data
➢ More complicated models for certain types of missing data

2. Lack of software capable of handling large sized analyses
➢ Have a zero-inflated negative binomial with 21 multivariate outcomes per 18 time points? 

3. New models/generalizations of models not available 
in software
➢ Have a new model?
➢ Need a certain link function not in software?

4. Membership in the cult of Bayesians
➢ They believe philosophical differences exist between numbers from Bayesian analysis and other 

types of estimators
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Bayesian Statistics: Perceptions and Issues

• The use of Bayesian statistics has been controversial 
➢ The use of certain prior distributions can produce results that are biased or 

reflect subjective judgment rather than objective science

• Most MCMC estimation methods are 
computationally intensive
➢ Until recently, very few methods available for those who aren’t into 

programming in Fortran, C, or C++

• Understanding of what Bayesian methods are and how they work 
is limited outside the field of mathematical statistics
➢ Especially the case in the educational and social sciences

• Over the past 20 years, Bayesian methods have become 
widespread – making new models estimable and becoming 
standard in some social science fields (quantitative psychology 
and educational measurement)
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HOW BAYESIAN METHODS WORK
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How Bayesian Statistics Work

• The term Bayesian refers to Thomas Bayes (1701-1761)
➢ Formulated Bayes’ Theorem

• Bayesian methods rely on Bayes’ Theorem:

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵

➢ 𝑃(𝐴) is the prior distribution (pdf) of A → WHY THINGS ARE BAYESIAN
➢ 𝑃(𝐵) is the marginal distribution (pdf) of B
➢ 𝑃(𝐵|𝐴) is the conditional distribution (pdf) of B, given A
➢ 𝑃(𝐴|𝐵) is the posterior distribution (pdf) of A, given B

• Bayes’ Theorem Example…
Imagine a patient takes a test for a rare disease (present 1% of the 
population) that has a 95% accuracy rate…what is the probability 
the patient actually has the disease?
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Bayes’ Theorem Example

Imagine a patient takes a test for a rare disease (present 1% 
of the population) that has a 95% accuracy rate…what is the 
probability the patient actually has the disease?
• D = the case where the person actually has the disease
• ND = the case where the person does not have the disease
• + = the test for the disease is positive

The question is asking for: P(D|+)
From Bayes’ Theorem:

𝑃 𝐷 + =
𝑃 + 𝐷 𝑃 𝐷

𝑃(+)
What we know: 

𝑃 𝐷 = .01
𝑃 + 𝐷 =  .95
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Back to Distributions

• We don’t know 𝑃 +  directly from the problem, but we can 
figure it out if we recall how distributions work:

• 𝑃 +  is a marginal distribution
• 𝑃 + 𝐷  is a conditional distribution

• We can get to the marginal by summing across the conditional:
𝑃 + = 𝑃 + 𝐷 𝑃 𝐷 + 𝑃 + 𝑁𝐷 𝑃 𝑁𝐷

= .95 ∗ .01 + .05 ∗ .99 =  .059
• So, to figure out the answer, if a person tests positive for the 

disease, the posterior probability they actually have the disease 
is:

𝑃 𝐷 + =
𝑃 + 𝐷 𝑃 𝐷

𝑃(+)
=

.01 ∗ .99

.059
= .17

Lecture 06: Intro to Bayesian and MCMC 10



A (Perhaps) More Relevant Example

• The old-fashioned Bayes’ Theorem example I’ve found to 
be difficult to generalize to your actual data, so…

• Imagine you administer an IQ test to a sample of 50 people 
➢ 𝑦𝑝 = person p’s IQ test score

• To put this into a linear-models context, the empty model 
for Y:

𝑦𝑝 = 𝛽0 + 𝑒𝑝

Where 𝑒𝑝 ∼ 𝑁 0, 𝜎𝑒
2

• From this empty model, we know that:
➢ 𝛽0 is the mean of the Y (the mean IQ)
➢ 𝜎𝑒

2 is the sample variance of Y
➢ The conditional distribution of Y is then: 𝑓 𝑦𝑝 𝛽0, 𝜎𝑒

2 ∼ 𝑁 𝛽0, 𝜎𝑒
2

Lecture 06: Intro to Bayesian and MCMC 11



Non-Bayesian Analysis

• Up to this point in the class, we have analyzed these data 
using ML and REML

• For ML, we maximized the joint likelihood of the sample with 
respect to the two unknown parameters 𝛽0 and 𝜎𝑒

2

𝐿 𝛽0, 𝜎𝑒
2 = ෑ

𝑝=1

𝑁

𝑓 𝑦𝑝 𝛽0, 𝜎𝑒
2 = ෑ

𝑝=1

𝑁
1

2𝜋𝜎𝑒
2

exp −
𝑦𝑝 − 𝛽0

2

2𝜎𝑒
2

• Here, using gls(), I found:
𝛽0 = 102.769
𝜎𝑒

2 = 239.490

• Also, I found:
𝐿𝑜𝑔𝐿 = −207.91
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Setting up a Bayesian Approach

• The (fully) Bayesian approach would treat each parameter as a random instance 
from some prior distribution

• Let’s say you know that this version of the IQ test is supposed to have a mean of 
100 and a standard deviation of 15

➢ So 𝛽0 should be 100 and 𝜎𝑒
2 should be 225

• Going a step further, let’s say you have seen results for administrations of this test 
that led you to believe that the mean came from a normal distribution with a SD 
of 2.13

➢ This indicates the prior distribution for the mean…or 
𝑓 𝛽0 ∼ 𝑁(100,2.132)

• Let’s also say that you don’t really have an idea as for the distribution of the 
variance, but you have seen it range from 200 to 400, so we can come up with a 
prior distribution for the variance of:

𝑓 𝜎𝑒
2 ∼ 𝑈 200,400

• Here the prior is a uniform distribution meaning all values from 200 to 400 are 
equally likely
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More on the Bayesian Approach

• The Bayesian approach is now to seek to find the posterior 
distribution of the parameters given the data:

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝

• We can again use Bayes’ Theorem (but for continuous 
parameters):

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 =

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0, 𝜎𝑒

2

𝑓 𝒚𝑝

=
𝑓 𝒚𝑝 𝛽0, 𝜎𝑒

2 𝑓 𝛽0)𝑓(𝜎𝑒
2

𝑓 𝒚𝑝

• Because 𝑓 𝒚𝑝  essentially is a constant (which involves 
integrating across 𝛽0 and 𝜎𝑒

2 to find its value), this term is often 
referred to as:

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 ∝ 𝑓 𝒚𝑝 𝛽0, 𝜎𝑒

2 𝑓 𝛽0)𝑓(𝜎𝑒
2

• The symbol ∝ is read as “is proportional to” – meaning it is the 
same as when multiplied by a constant
➢ So it is the same for all values of 𝛽0 and 𝜎𝑒

2 
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Unpacking the Posterior Distribution

• 𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2  is the conditional distribution of the data given the 

parameters – we know this already from our linear model (slide 12)

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 = ෑ

𝑝=1

𝑁

𝑓 𝑦𝑝 𝛽0, 𝜎𝑒
2 = ෑ

𝑝=1

𝑁
1

2𝜋𝜎𝑒
2

exp −
𝑦𝑝 − 𝛽0

2

2𝜎𝑒
2

• 𝑓 𝛽0  is the prior distribution of 𝛽0, which we decided would be 
𝑁 100,2.132 , giving the height of any 𝛽0:

𝑓 𝛽0 =
1

2𝜋𝜎𝛽0

2

exp −
𝛽0 − 𝜇𝛽0

2

2𝜎𝛽0

2

=
1

2𝜋 ∗ 2.132
exp −

𝛽0 − 100 2

2 ∗ 2.132
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Unpacking the Posterior Distribution

• 𝑓 𝜎𝑒
2  is the prior distribution of 𝜎𝑒

2, which we 
decided would be U 200,400 , giving the height 
of any value of 𝜎𝑒

2 as:

𝑓 𝜎𝑒
2 =

1

𝑏𝜎𝑒
2 − 𝑎𝜎𝑒

2
=

1

400 − 200
=

1

200
= .005

• Some useful terminology:
➢The parameters of the model (for the data) get prior 

distributions
➢The prior distributions each have parameters – these 

parameters are called hyper-parameters
➢The hyper-parameters are not estimated in our example, 

but could be – giving us a case where we would call our 
priors empirical priors
AKA random intercept variance
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Up Next: Estimation (first using non-MCMC)

• Although MCMC is commonly thought of as the only method for 
Bayesian estimation, there are several other forms

• The form analogous to ML (where the value of the parameters that 
maximize the likelihood or log-likelihood) is called Maximum (or 
Modal) a Posteriori estimation (MAP) 
➢ The term modal comes from the maximum point coming at the peak (the mode) of the 

posterior distribution

• In practice, this functions similar to ML, only instead of maximizing the 
joint likelihood of the data, we now have to worry about the prior:

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 =

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0)𝑓(𝜎𝑒

2

𝑓 𝒚𝑝

∝ 𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0)𝑓(𝜎𝑒

2

• Because it is often more easy to work with, the log of this is often used:

log 𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 ∝ log 𝑓 𝒚𝑝 𝛽0, 𝜎𝑒

2 + log 𝑓 𝛽0 + log 𝑓 𝜎𝑒
2
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Grid Searching for the MAP Estimate of 𝜷𝟎

• To demonstrate, let’s imagine we know 𝜎𝑒
2 =

239.490 
➢Later we won’t know this…when we use MCMC

• We will use Excel to search over a grid of possible 
values for 𝛽0

• In each, we will use log 𝑓 𝒚𝑝 𝛽0 + log 𝑓 𝛽0

• As a comparison, we will also search over the ML 
log likelihood function log 𝑓 𝒚𝑝 𝛽0
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ML v. Prior for 𝜷𝟎 of N(100, 2.132)

• Maximum for ML: 102.8

• Maximum for Bayes: 101.4 
(estimate is closer to mean of prior)
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ML vs. Prior for 𝜷𝟎 of N(100, 10002)

• Maximum for ML: 102.8

• Maximum for Bayes: 102.8
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ML vs. Prior for 𝜷𝟎 of N(100, 0.152)

• Maximum for ML: 102.8

• Maximum for Bayes: 100
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ML vs. Prior for 𝜷𝟎 of U(-1000,1000)

• Maximum for ML: 102.8

• Maximum for Bayes: 102.8
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Summarizing Bayesian So Far

• Bayesian → parameters have prior distributions

• Estimation in Bayesian → MAP estimation is much like estimation 
in ML, only instead of likelihood of data, now have to add in 
likelihood for prior of all parameters
➢ But…MAP estimation may be difficult as figuring out derivatives for gradient 

function (for Newton-Raphson) are not always easy
➢ Where they are easy: Conjugate priors → prior distributions that are the same 

as the posterior distribution (think multilevel with normal outcomes)

• Priors can be informative (highly peaked) or uninformative 
(not peaked) 
➢ Some uninformative priors will give MAP estimates that are equal to ML

• Up next: estimation by brute force: Markov Chain Monte Carlo
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MARKOV CHAIN MONTE CARLO ESTIMATION: 
THE BASICS
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How Estimation Works (More or Less)

• Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” in 
the title. Forms of least squares include “Generalized”, “Ordinary”, 
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively 
Reweighted.” Typically the estimator of last resort…

2. Maximize Something: Typically found with names that have 
“maximum” in the title. Forms include “Maximum likelihood”, “ML”, 
“Residual Maximum Likelihood” (REML), “Robust ML”. Typically the 
gold standard of estimators (and we now know why).

3. Use Simulation to Sample from Something: more recent advances in 
simulation use resampling techniques. Names include “Bayesian 
Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis 
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for 
complex models where ML is not available or for methods where 
prior values are needed.

Lecture 06: Intro to Bayesian and MCMC 25



How MCMC Estimation Works

• MCMC estimation works by taking samples from the posterior distribution of the 
data given the parameters:

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 =

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0 𝑓 𝜎𝑒

2

𝑓 𝒚𝑝
➢ How is that possible? We don’t know 𝑓(𝒚𝑝)…but…we’ll see…

• After enough values are drawn, a rough shape of the distribution 
can be formed

➢ From that shape we can take summaries and make them our parameters (i.e., mean)

• How the sampling mechanism happens comes from several different algorithms 
that you will hear about, the most popular being:

➢ Gibbs Sampling: used when 𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝  is known

 Parameter values are drawn and kept throughout the chain

➢ Metropolis-Hastings (within Gibbs): used when 𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝  is unknown 

 Parameter values are proposed, then either kept or rejected
 SAS PROC MCMC uses the latter
 TRIVIA NOTE: The Metropolis algorithm comes from Chemistry (in 1950)

➢ Hybrid MC: Newer versions (1980s; implemented in Stan)

• In some fields (Physics in particular), MCMC estimation is referred to as 
Monte Carlo estimation
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MCMC Estimation with MHG

• The Metropolis-Hastings algorithm works a bit differently 
than Gibbs sampling:

1. Each parameter (here 𝛽0 and 𝜎𝑒
2) is given an initial value

2. In order, a new value is proposed for each model 
parameter from some distribution:

𝛽0
∗ ∼ 𝑄 𝛽0

∗ 𝛽0 ; 𝜎𝑒
2∗

∼ 𝑄 𝜎𝑒
2∗

𝜎𝑒
2

3. The proposed value is then accepted as the current value 
with probability max( 𝑟𝑀𝐻𝐺 , 1):

𝑟𝑀𝐻𝐺 =
𝑓 𝒚𝑝 𝛽0

∗, 𝜎𝑒
2∗

𝑓 𝛽0
∗ 𝑓 𝜎𝑒

2∗
𝑄 𝛽0 𝛽0

∗ 𝑄 𝜎𝑒
2 𝜎𝑒

2∗

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0)𝑓(𝜎𝑒

2 𝑄 𝛽0
∗ 𝛽0 𝑄 𝜎𝑒

2∗
𝜎𝑒

2

4. The process continues for a pre-specified number of 
iterations (more is better)
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Notes About MHG

• The constant in the denominator of the posterior distribution:

𝑓 𝛽0, 𝜎𝑒
2 𝒚𝑝 =

𝑓 𝒚𝑝 𝛽0, 𝜎𝑒
2 𝑓 𝛽0)𝑓(𝜎𝑒

2

𝑓 𝒚𝑝

…cancels when the ratio is formed

• The proposal distributions 𝑄 𝛽0
∗ 𝛽0  and 𝑄 𝜎𝑒

2∗
𝜎𝑒

2  can literally 
be any statistical distribution
➢ The trick is picking ones that make the chain “converge” quickly
➢ Want to find values that lead to moderate number of accepted parameters
➢ SAS PROC MCMC/WINBUGS don’t make you pick these

• Given a long enough chain, the final values of the chain will come 
from the posterior distribution
➢ From that you can get your parameter estimates
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Introducing Jags…
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Iteration History from JAGS
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Examining the Chain and Posteriors
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Practical Specifics in MCMC Estimation

• A burn-in period is used where a chain is run for a set number of 
iterations before the sampled parameter values are used in the 
posterior distribution

• Because of the rejection/acceptance process, any two iterations 
are likely to have a high correlation (called autocorrelation) → 
posterior chains use a thinning interval to take every Xth sample 
to reduce the autocorrelation
➢ A high autocorrelation may indicate the standard error of the posterior 

distribution will be smaller than it should be

• The chain length (and sometimes number of chains) must also be 
long enough so the rejection/acceptance process can reasonably 
approximate the posterior distribution

• How does one what values to pick for these? Output diagnostics
➢ Trial. And. Error.
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Best Output Diagnostics: the Eye Ball Test
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Perfect:

Not 
Perfect:

Not 
Perfect:

Not 
Perfect:



Output Statistics and Diagnostics
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Changing Up the Prior

• To demonstrate how changing the prior 
affects the analysis, we will now try a few 
prior distributions for our parameters

• Prior: 𝛽0 ∼ 𝑈 −10000,10000 ; 𝜎𝑒
2 ∼

𝑈(0,5000)
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Chain Plots
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Changing Up the Prior

• Prior: 𝛽0 ∼ 𝑁 0,100,000 ;

• 𝜎𝑒
−2 ∼ 𝑔𝑎𝑚𝑚𝑎(𝑟 =  .01, 𝜆 =  .01)
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Chain Plots
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What About an Informative Prior?

• Prior: 𝛽0 ∼ 𝑈 102,103 ; 𝜎𝑒
2 ∼ 𝑈 238,242

Lecture 06: Intro to Bayesian and MCMC 39



Chain Plots
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MCMC in R

• R itself does not have an MCMC engine native to 
the language – but there are many free versions 
available outside of R

• For instance, if you wanted to estimate a path 
model with MCMC you can:
➢ Install the blavaan package (Bayesian lavaan)
➢Run the path analysis with MCMC

• I am not showing you these because I they all end 
up being really frustrating
➢Very buggy
➢Took me about an hour to just install all code
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WRAPPING UP
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Wrapping Up

• Today was an introduction to Bayesian statistics
➢Bayes = use of prior distributions on parameters

• We used two methods for estimation:
➢MAP estimation – far less common
➢MCMC estimation

 Commonly, people will say Bayesian and mean MCMC – but 
Bayesian is just the addition of priors. MCMC is one way of 
estimating Bayesian models!

• MCMC is effective for most Bayesian models:
➢Model likelihood and prior likelihood are all that are needed

• MCMC is estimation by brute force:
➢Can be very slow, computationally intensive, and disk-space 

intensive
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