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Today’s Class

- An introduction to Bayesian statistics:

>What it is
> What it does
> Why people use it

- An introduction to Markov Chain Monte Carlo
(MCMC estimation)

> How it works
> Features to look for when using MCMC
> Why people use it



AN INTRODUCTION TO
BAYESIAN STATISTICS



Bayesian Statistics: The Basics

- Bayesian statistical analysis refers to the use of models
where some or all of the parameters are treated as

random components
> Each parameter comes from some type of distribution

- The likelihood function of the data is then augmented with
an additional term that represents the likelihood of the
prior distribution for each parameter

» Think of this as saying each parameter has a certain likelihood — the
height of the prior distribution

- The final estimates are then considered summaries of the
posterior distribution of the parameter, conditional
on the data

> In practice, we use these estimates to make inferences, just as we have
when using the non-Bayesian approaches we have used throughout
this class (e.g., maximum likelihood/least squares)



Bayesian Statistics: Why It Is Used

Bayesian methods get used because the relative accessibility of one method of
estimation (MCMC — to be discussed shortly)

There are four main reasons why people use MCMC:

1.  Missing data
> Multiple imputation: MCMC is used to estimate model parameters then “impute” data
> More complicated models for certain types of missing data

2. Lack of software capable of handling large sized analyses
> Have a zero-inflated negative binomial with 21 multivariate outcomes per 18 time points?

3.  New models/generalizations of models not available

in software
> Have a new model?
> Need a certain link function not in software?

4. Membership in the cult of Bayesians

> They believe philosophical differences exist between numbers from Bayesian analysis and other
types of estimators
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Bayesian Statistics: Perceptions and Issues

- The use of Bayesian statistics has been controversial

> The use of certain prior distributions can produce results that are biased or
reflect subjective judgment rather than objective science

- Most MCMC estimation methods are

computationally intensive

> Until recently, very few methods available for those who aren’t into
programming in Fortran, C, or C++

- Understanding of what Bayesian methods are and how they work
is limited outside the field of mathematical statistics
> Especially the case in the educational and social sciences

- Over the past 20 years, Bayesian methods have become
widespread — making new models estimable and becoming
standard in some social science fields (quantitative psychology
and educational measurement)
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HOW BAYESIAN METHODS WORK



How Bayesian Statistics Work

- The term Bayesian refers to Thomas Bayes (1701-1761)

> Formulated Bayes’ Theorem

- Bayesian methods rely on Bayes’ Theorem:
P(B|A)P(A)

P(A|B) = P B

> P(A) is the prior distribution (pdf) of A > WHY THINGS ARE BAYESIAN
» P(B) is the marginal distribution (pdf) of B

> P(B|A) is the conditional distribution (pdf) of B, given A

> P(A|B) is the posterior distribution (pdf) of A, given B

- Bayes’ Theorem Example...

Imagine a patient takes a test for a rare disease (present 1% of the
population) that has a 95% accuracy rate...what is the probability
the patient actually has the disease?



Bayes’ Theorem Example

Imagine a patient takes a test for a rare disease (present 1%
of the population) that has a 95% accuracy rate...what is the
probability the patient actually has the disease?

- D =the case where the person actually has the disease
- ND =the case where the person does not have the disease
- + =the test for the disease is positive

The question is asking for: P(D| +)
From Bayes’ Theorem:

P(+|D)P(D
ploi) = 2P
What we know:
P(D) = .01

P(+|D) = 95



Back to Distributions

. We don’t know P(+) directly from the problem, but we can
figure it out if we recall how distributions work:

. P(+4) is a marginal distribution
. P(+|D) is a conditional distribution

- We can get to the marginal by summing across the conditional:
P(+) = P(+|D)P(D) + P(+|ND)P(ND)
=.95%.01+.05%.99 = .059

. So, to figure out the answer, if a person tests positive for the
disease, the posterior probability they actually have the disease
IS:

P(+|D)P(D) ~.01%.99

P(+) 059

P(D|+) = 17



A (Perhaps) More Relevant Example

- The old-fashioned Bayes’ Theorem example I’'ve found to
be difficult to generalize to your actual data, so...

- Imagine you administer an 1Q test to a sample of 50 people
> Yp = person p’s IQ test score

- To put this into a linear-models context, the empty model
for:

Yp = Bo + €p
Where e, ~ N(0, o¢)

- From this empty model, we know that:
> B is the mean of the Y (the mean 1Q)
> 02 is the sample variance of Y

> The conditional distribution of Y is then: f(yp|,80, 02) ~ N(Bo, )

o Bayesian and MCMC



Non-Bayesian Analysis

- Up to this pointin the class, we have analyzed these data
using ML and REML

- For ML, we maximized the joint likelihood of the sample with
respect to the two unknown parameters 5, and g2
2
= Bo)

(v
L(Bo, 02) = ,0¢ ) = -
(Bo, 0¢) gf(yPLBO 7 ) g\/@exp< 202

. Here, using gls(), | found:
fo = 102.769

o2 = 239.490

. Also, | found:
LogL = —207.91



Setting up a Bayesian Approach

The (fully) Bayesian approach would treat each parameter as a random instance
from some prior distribution

Let’s say you know that this version of the 1Q test is supposed to have a mean of
100 and a standard deviation of 15
> S0 8y should be 100 and 6 should be 225

Going a step further, let’s say you have seen results for administrations of this test
that led you to believe that the mean came from a normal distribution with a SD
of 2.13

> This indicates the prior distribution for the mean...or
f(Bo) ~ N(100,2.132)

Let’s also say that you don’t really have an idea as for the distribution of the
variance, but you have seen it range from 200 to 400, so we can come up with a
prior distribution for the variance of:

f(02) ~ U(200,400)

Here the prior is a uniform distribution meaning all values from 200 to 400 are
equally likely
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More on the Bayesian Approach

- The Bayesian approach is now to seek to find the posterior
distribution of the parameters given the data:

f(Bo,02|yp) P(BIA)P(4)
P(A|B) = P(B)
- We can again use Bayes’ Theorem (but for continuous
parameters):
f(y |,Bo:02)f(.30:02 f(y |,80:(72)f(,50)f(02)
f(ﬁ(); 0_62|yp) — p e e’/ |4 e e

f(yp) B f(yp)

- Because f(yp) essentially i S 2 constant (which involves
integrating across S, and o2 to find its value), this term is often
referred to as:

f(ﬁo:gezb’p) X f(Ypl,Bo» )f(ﬁo)f(g )

- The symbol « is read as “is proportional to” — meaning it is the
same as when multiplied by a constant
> So it is the same for all values of Bo and a2



Unpacking the Posterior Distribution

- f(¥p|Bo, 02) is the conditional distribution of the data given the
parameters —we know this already from our linear model (slide 12)

— _ (Yp — ,80)
F Ol o2) = ljlf(yp|ﬁo, 2) = ﬂ y L

(<8 0) is the rior distribution of [, which we decided would be
N(100,2.13 ) giving the height of any f:

2
1 —_
f(Bo) = exXp| — ('BO 20‘[2130)
ZnaﬁZO 0




Unpacking the Posterior Distribution

. f(0#) is the prior distribution of g2, which we
decided would be U(200,400), giving the height
of any value of g2 as:

—— = .005

2 — — —
f o) b,z —a,z 400—200 200

- Some useful terminology:

> The parameters of the model (for the data) get prior
distributions

» The prior distributions each have parameters — these
parameters are called hyper-parameters

> The hyper-parameters are not estimated in our example,
but could be — giving us a case where we would call our
priors empirical priors

+ AKA random intercept variance

1 1




Up Next: Estimation (first using non-MCMC)

. Although MCMC is commonly thought of as the only method for
Bayesian estimation, there are several other forms

- The form analogous to ML (where the value of the parameters that
maximize the likelihood or log-likelihood) is called Maximum (or
Modal) a Posteriori estimation (MAP)

> The term modal comes from the maximum point coming at the peak (the mode) of the
posterior distribution

- In practice, this functions similar to ML, only instead of maximizing the
joint likelihood of the data, we now have to worry about the prior:

2 2
f(Bo, de|yp) = fplho ;(J)Vf ;ﬁ )f (%) F(¥p|Bor 02)f (Bo) f (0
D

- Because it is often more easy to work with, the log of this is often used:

10g (F(Bo, 02y,)) o 1og £ (v, |or 52) + l0g f(Bo) + log f(02)




Grid Searching for the MAP Estimate of 3,

. To demonstrate, let’s imagine we know g2 =

239.490

» Later we won’t know this...when we use MCMC

- We will use Excel to search over a grid of possible
values for 5,

- In each, we will use logf(yp‘ﬁo) + log f (By)

- As a comparison, we will also search over the ML
log likelihood function log f(yp‘ﬁo)



ML v. Prior for 8, of N(100, 2.13?)

- Maximum for ML: 102.8

- Maximum for Bayes: 101.4
2otestimate is closer to.mean of prior)
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ML vs. Prior for 3, of N(100, 1000?)

- Maximum for ML: 102.8
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ML vs. Prior for B, of N(100, 0.15%)

- Maximum for ML: 102.8

%[)ammum for Bayes: 100
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ML vs. Prior for 3, of U(-1000,1000)
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Summarizing Bayesian So Far

- Bayesian > parameters have prior distributions

- Estimation in Bayesian 2 MAP estimation is much like estimation
in ML, only instead of likelihood of data, now have to add in

likelihood for prior of all parameters

> But...MAP estimation may be difficult as figuring out derivatives for gradient
function (for Newton-Raphson) are not always easy

> Where they are easy: Conjugate priors = prior distributions that are the same
as the posterior distribution (think multilevel with normal outcomes)

- Priors can be informative (highly peaked) or uninformative

(not peaked)
> Some uninformative priors will give MAP estimates that are equal to ML

- Up next: estimation by brute force: Markov Chain Monte Carlo
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MARKOV CHAIN MONTE CARLO ESTIMATION:
THE BASICS



How Estimation Works (More or Less)

- Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” in
the title. Forms of least squares include “Generalized”, “Ordinary”,
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively
Reweighted.” Typically the estimator of last resort...

2. Maximize Something: Typically found with names that have
“maximum” in the title. Forms include “Maximum likelihood”, “ML”,
“Residual Maximum Likelihood” (REML), “Robust ML”. Typically the

gold standard of estimators (and we now know why).

3. Use Simulation to Sample from Something: more recent advances in
simulation use resampling techniques. Names include “Bayesian

/{4

Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for
complex models where ML is not available or for methods where

prior values are needed.




How MCMC Estimation Works

- MCMC estimation works by taking samples from the posterior distribution of the

data given the parameters:
2 _ f(yp|,80» 02)f(Bo) f(ad)

> How is that possible? We don’t know f (y,)...but..we’ll see...

- After enough values are drawn, a rough shape of the distribution

can be formed
> From that shape we can take summaries and make them our parameters (i.e., mean)

- How the sampling mechanism happens comes from several different algorithms
that you will hear about, the most popular being:
> Gibbs Sampling: used when f(ﬁo, aez|yp) is known

+ Parameter values are drawn and kept throughout the chain
> Metropolis-Hastings (within Gibbs): used when f(,BO, aez|yp) is unknown
+ Parameter values are proposed, then either kept or rejected
+ SAS PROC MCMC uses the latter
+ TRIVIA NOTE: The Metropolis algorithm comes from Chemistry (in 1950)

> Hybrid MC: Newer versions (1980s; implemented in Stan)

- In some fields (Physics in particular), MCMC estimation is referred to as
Monte Carlo estimation
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MCMC Estimation with MHG

- The Metropolis-Hastings algorithm works a bit differently
than Gibbs sampling:

1. Each parameter (here S, and ¢2) is given an initial value

2. In order, a new value is proposed for each model
parameter from some distribution:
2
c?)

Bs ~ Q(Bs1Bo); 0" ~ Qa2

3. The proposed value is then accepted as the current value
with probability max( ryye, 1):

aez*)

F(plB5, 02 )f B f (02 )Q(Bo 185)@ (2
r = "
T f(rplBos 02)f (Bo) f (62)Q(B51B0)Q (02 |02)

4. The process continues for a pre-specified number of
iterations (more is better)




Notes About MHG

- The constant in the denominator of the posterior distribution:
F(Gurozly,) = [Qolbo oD B)f 0D)
0r%Ye|Jp) —
f(yp)

...cancels when the ratio is formed

. The proposal distributions Q(Bg|5,) and Q(02"|62) can literally
be any statistical distribution

> The trick is picking ones that make the chain “converge” quickly

> Want to find values that lead to moderate number of accepted parameters
> SAS PROC MCMC/WINBUGS don’t make you pick these

. Given a long enough chain, the final values of the chain will come
from the posterior distribution

> From that you can get your parameter estimates
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Introducing Jags...

# estimation with Bayesian
» model@1lBayes = function(){

# likelihood
r  for (1 in 1:n){
y[i] ~ dnorm(mu, tau)
}

#priors
mu ~ dnorm(100, 1/2.13/2)
tau ~ dunif(1/400, 1/200)

sigmaZ2 = 1/tau
}

data = list(y = dataIQ%y, n = nrow(datalQ))

"

jags.param = c("mu", "tau", "sigma2")

fit <- jags.parallel(data=data,

parameters.to.save=jags.param,

n.iter=50000, n.chains=2,n.thin=2,n.burnin=40000,
model . file=model@1Bayes)
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Iteration History from JAGS
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O 0 N & v A W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

i/ Filter
deviance
416.7964
418.1109
416.7720
416.7956
416.7415
417.8188
419.4729
415.9143
416.2015
417.2012
415.8802
417.0017
417.2518
415.8366
416.1867
416.5808
416.4756
419.4313
416.1548
416.5363
416.2943
415.8509
419.3382
415.9175
417.6465
420.4722
416.8376
417.6739
417.9725

mu
100.85794
102.33473
100.62472
100.59997
100.74722
99.76745
98.87860
102.97544
101.86554
102.11906
103.19065
101.14455
100.24214
103.05208
104.09353
100.85335
101.11430
99.29725
101.89660
101.11042
101.30912
102.77879
98.95027
103.40843
102.22143
103.00402
101.28403
100.28041
104.73157

sigmaz2
267.4554
328.7272
242.2023
246.9883
257.4887
230.0463
298.0748
254.1412
219.4816
303.9016
247.1723
285.1704
229.8218
240.4516
243.5673
244.6015
228.4360
314.4079
221.1416
224.6534
250.4290
248.1755
296.3523
245.3931
316.6267
381.0396
208.8647
287.1524
310.0394

tau

0.003738941
0.003042036
0.004128781
0.004048774
0.003883666
0.004346951
0.003354863
0.003934821
0.004556191
0.003290539
0.004045762
0.003506675
0.004351197
0.004158841
0.004105641
0.004088282
0.004377594
0.003180582
0.004521989
0.004451302
0.003993148
0.004029407
0.003374363
0.004075094
0.003158293
0.002624399
0.004787788
0.003482472
0.003225396
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Examining the Chain and Posteriors

Trace of deviance
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Practical Specifics in MCMC Estimation

- A burn-in period is used where a chain is run for a set number of
iterations before the sampled parameter values are used in the
posterior distribution

- Because of the rejection/acceptance process, any two iterations
are likely to have a high correlation (called autocorrelation) 2>
posterior chains use a thinning interval to take every Xth sample
to reduce the autocorrelation

> A high autocorrelation may indicate the standard error of the posterior
distribution will be smaller than it should be

- The chain length (and sometimes number of chains) must also be
long enough so the rejection/acceptance process can reasonably
approximate the posterior distribution

- How does one what values to pick for these? Output diagnostics
> Trial. And. Error.



Best Output Diagnostics: the Eye Ball Test
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Output Statistics and Diagnostics

> fit
Inference for Bugs model at "model@l1Bayes", fit using jags,
2 chains, each with 50000 iterations (first 40000 discarded), n.thin = 2
n.sims = 10000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 101.312 1.546 98.280 100.2/79 101.316 102.347 104.349 1.001 10000
sigma2 256.627 40.791 202.918 224.724 248.240 280.247 358.019 1.001 10000
tau 0.004 0.001 0.003 0.004 0.004 0.004 0.005 1.001 10000

deviance 417.317 1.404 415.862 416.284 416.869 417.922 421.059 1.001 10000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 1.0 and DIC = 418.3

DIC is an estimate of expected predictive error (lower deviance is better).
1
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Changing Up the Prior

- To demonstrate how changing the prior
affects the analysis, we will now try a few
prior distributions for our parameters

> t1ts
eInference for Bugs model at "model@Z2Bayes", fit using jags,
2 chains, each with 50000 iterations (first 40000 discarded), n.thin = 2
n.sims = 10000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 102.750 2.229 98.385 101.239 102.758 104.251 107.100 1.001 10000
sigma2 244.899 51.326 164.789 208.259 238.353 273.458 362.843 1.001 10000
tau 0.004 0©0.001 ©0.003 0.004 0©0.004 0.005 0©0.0060 1.001 10000

deviance 417.856 2.028 415.869 416.415 417.241 418.624 423.285 1.001 3200

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 2.1 and DIC = 419.9
DIC is an estimate of expected predictive error (lower deviance is better).
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Chain Plots
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Changing Up the Prior

- Prior: By ~ N(0,100,000);
. 0, % ~ gamma(r = .01, = .01)

> fit3
Inference for Bugs model at "model@3Bayes", fit using jags,
2 chains, each with 50000 iterations (first 40000 discarded), n.thin = 2

n.sims = 10000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 102.784 2.224 98.4260 101.274 102.758 104.254 107.175 1.001 7300
sigma2z 253.996 52.970 171.522 216.053 247.279 284.606 375.192 1.001 9500
tau 0.004 0.001 0©0.003 0.004 0.004 0.005 0.0060 1.001 9500

deviance 417.812 1.994 415.872 416.409 417.203 418.572 423.105 1.003 1700

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 2.0 and DIC = 419.8
DIC is an estimate of expected predictive error (lower deviance is better).

" - ™~ ] -

Lecture 06: Intro to Bayesian and MCMC 37



Chain Plots
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What About an Informative Prior?

. Prior: By ~ U(102,103); 02 ~ U(238,242)

> fit4
Inference for Bugs model at "model@4Bayes", fit using jags,
2 chains, each with 50000 iterations (first 40000 discarded), n.thin = 2
n.sims = 10000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 102.500 0.289 102.026 102.250 102.502 102.752 102.975 1.001 8200
sigma2 239.992 1.155 238.104 238.979 240.011 240.993 241.890 1.001 10000
tau 0.004 0.000 0.004 0.004 0.004 0.004 0.004 1.001 10000

deviance 415.853 0.036 415.820 415.823 415.835 415.876 415.935 1.000 1

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 0.0 and DIC = 415.9
DIC is an estimate of expected predictive error (lower deviance is better).
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Chain Plots
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MCMCinR

- R itself does not have an MCMC engine native to
the language — but there are many free versions
available outside of R

- For instance, if you wanted to estimate a path
model with MCMC you can:

> Install the blavaan package (Bayesian lavaan)
» Run the path analysis with MCMC

- | am not showing you these because | they all end

up being really frustrating

> Very buggy
> Took me about an hour to just install all code



WRAPPING UP
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Wrapping Up

- Today was an introduction to Bayesian statistics
> Bayes = use of prior distributions on parameters

- We used two methods for estimation:
> MAP estimation — far less common

> MCMC estimation

+ Commonly, people will say Bayesian and mean MCMC — but
Bayesian is just the addition of priors. MCMC is one way of
estimating Bayesian models!

- MCMC is effective for most Bayesian models:
» Model likelihood and prior likelihood are all that are needed

- MCMC is estimation by brute force:

> Can be very slow, computationally intensive, and disk-space
intensive
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