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• Scores
➢ Types of scores

 Sum scores / test scores

 Factor scores

➢ Score contents

➢ Relating sum scores to factor scores

➢ Score reliability

• Why using scores alone in separate analysis, while done 
almost always, is not good practice

Today’s Class
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• Overall, the purpose of this class and the main message of 
missing data is that multivariate analyses with (and 
without) measurement error should be conducted 
simultaneously
➢ Error propagates

• There are many instances when one cannot do a 
simultaneous analysis
➢ This lecture is an attempt to get you as close to results from a simultaneous 

analysis by getting you to understand the psychometric and statistical 
properties of using scores 

The Big Picture
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WHAT’S IN A SUM SCORE?
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• As I’ve been a student and a teacher I have found the topic of scores 
to be incomplete and often contradictory

• Some things I’ve heard:
➢ “Sum scores are almost always okay”
➢ “Factor scores (think GRE) are okay if they are from some strange sounding model…”
➢ “…otherwise factor scores are the work of the devil”

• A question that I hearing: Why use Structural Equation Modeling (or 
CFA/IRT) when I can just use a sum of the items?

➢ Sum of the items == sum score == total score == Add s**t up (ASU) model

• Sum score are used as:
➢ Observed variables in secondary analyses
➢ Results given to participants, patients, students, etc… 

• Current practice in psychological/educational research seems to be:
➢ Use a sum score until some reviewer (#3?) says you cannot use one
➢ At that point, use a confirmatory factor model to verify that you have a one-factor scale
➢ …then use a sum score

The Purpose of this Lecture: Some Clarity on Score
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• To demonstrate the concepts appearing throughout this 
section, we will use a three-item scale purporting to 
measure a person’s interest in gambling
➢ Items: GRI1, GRI3, and GRI 5

• As scores on each item ranged from 1 to 6 in integer units, 
this means sum scores must fall within a range of 3 to 18

Demonstration Data
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Distribution of GRI Sum Scores
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• The use of sum scores brings about a discussion about the 
psychometrics that underlie sum scores

• What you have learned about measurement so far likely 
falls under the category of CTT:
➢ Writing items and building scales

➢ Item analysis

➢ Score interpretation

➢ Evaluating reliability and construct validity

• Big picture: We will view CTT as model with a restrictive 
set of assumptions within a more general family of latent 
trait measurement models
➢ Confirmatory Factor Analysis is a measurement model

Psychometric Properties of as Sum Score
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• What is the name of the latent trait measured by a test?
➢ Classical Test Theory (CTT)  =  “True Score” (T)

➢ Confirmatory Factor Analysis (CFA)  =  “Factor Score” (F)

➢ Item Response Theory (IRT)  =  “Theta” (θ)

• Fundamental difference in approach:
➢ CTT → unit of analysis is the WHOLE TEST (item sum or mean)

 Sum = latent trait, and the sum doesn’t care how it was created

 Only using the sum requires restrictive assumptions about the items

➢ CFA, IRT, and beyond → unit of analysis is the ITEM
 Model of how item response relates to an estimated latent trait

 Different models for differing item response formats

 Provides a framework for testing adequacy of measurement models

Differences Among Measurement Models
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• In CTT, the TEST is the unit of analysis: 
𝑌Total =  𝑇 + 𝑒

➢ True score T:
 Best estimate of ‘latent trait’: Mean over infinite replications
 Scale of T is the same as the scale of 𝑌Total 

➢ Error e:
 Expected value (mean) of 0, expected to be uncorrelated with T
 Supposed to wash out over repeated observations

• So the expected value of 𝒀𝒕𝒐𝒕𝒂𝒍 is 𝑻
➢ Put another way: should the model fit, 𝑌𝑡𝑜𝑡𝑎𝑙 is an unbiased estimate of 𝑇
➢ The true score is why you created the sum in the first place→ your test purports to measure one 

thing, bringing about one sum score per person

• No distributional assumptions made…yet

• Even if your data fit a one-factor model, when using a sum score, the error 
portion is part of 𝑌𝑇𝑜𝑡𝑎𝑙

➢ But, it is only one part of the error that is in a sum score

• Because the CTT model does not include individual items, 
items must be assumed exchangeable 

➢ If the model fits, then more items means better reliability

Classical Test Theory: Assumed Model

Missing Data: Final Lecture



• A goal of CTT is to quantify reliability
➢ Reliability is the proportion of variance in the sum score that is due to variation in 

the latent trait

• Reliability decomposition comes from Var(Y)
➢ Var() function comes from the expected value in mathematical statistics

➢ 𝐸 𝑔 𝑥 = ׬ 𝑔 𝑥 𝑓 𝑥 𝑑𝑥 
 Over the sample space/support of x with probability density function f(x)
 Replace integral with a sum for discrete x (and pdf for probability mass function)

➢ Mean: 𝜇 = 𝐸 𝑥 = 𝑥׬  𝑓 𝑥 𝑑𝑥

➢ Variance: 𝑉𝑎𝑟 𝑥 = 𝐸 𝑥 − 𝜇 2 = 𝐸 𝑥 − 𝐸 𝑥
2

= ׬ 𝑥 − 𝜇 2 𝑓 𝑥 𝑑𝑥

• For CTT: 
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑒 = Var 𝑇 + 𝑉𝑎𝑟 𝑒 + 2𝐶𝑜𝑣 𝑇, 𝑒

• But, 𝐶𝑜𝑣 𝑇, 𝑒 = 0 as T and e are assumed independent, so
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑉𝑎𝑟 𝑒

More CTT Basics
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• Reliability, as a proportion of variance in sum score due to 
the trait:

𝜌 =
Var 𝑇

Var 𝑌
=

Var 𝑇

Var 𝑇 + Var(𝑒)
➢ Var 𝑌  == variance of observed sum score

➢ Var 𝑇  == variance of true score == variability in the unobserved latent trait 
== individual differences

➢ Var 𝑒  == variance of error == measurement error

• Key question: how does one quantify reliability?
➢ We will see that depends….

Moving from Variance to Reliability
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• Another type of sum score is a parcel (sometimes called an 
item parcel or an item bundle)
➢ A parcel then takes the places of the summed variables in a larger structural 

equation model

• There is some debate about what parceling assumes
➢ There are some who believe a parcel assumes a CTT model:

𝑌Total =  𝑇 + 𝑒

➢ There are others who parceling makes no assumptions, which is 
mathematically equivalent to:

𝑌Total =  𝑒

• Either way:
➢ What we are saying about CTT scores applies to parcels and parceling

➢ Parceling is frequently done to hide model misfit, so it is like cheating

Parceling: Creating Another Type of Sum Score
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• Measurement error 
➢ e.g., the 𝑒 in 𝑌 = 𝑇 + 𝑒

• Model misspecification error of various types:
➢ Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
➢ Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
➢ Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

➢ Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

➢ Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
➢ How you treat missing responses to items makes even more untenable assumptions

• Sampling error 
➢ (meaning error in parameters due to small n) is not a source of error in a sum score
➢ Note: measurement error is sampling error with respect to items instead of people

Potential Sources of Error in a Sum Score
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• Ignoring error will lead to inaccurate and potentially 
misleading results
➢ Biased estimates (Type II error)

➢ Biased standard errors of estimates (Type I error)

• Some sources of error matter more than others

• Measurement error is often thought of as the worst, but I 
believe model misspecification error (of all five types from 
last slide) to be even worse than measurement error

Why Error Matters
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95% Confidence Intervals: Quantitative (GRE 2011 Guide)
SEM ranges from 9 to 55
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http://www.ets.org/s/gre/pdf/gre_guide.pdf



FACTOR SCORES
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• To describe a factor score, first remember the CFA model:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

 

• Simply put: A factor score is an estimated value for 𝐹𝑝, or ෠𝐹𝑝

• There has long been a resistance to using factor scores in 
psychological research with the most common objection cited being 
the indeterminacy of factor scores
➢ Indeterminacy of factor scores == factor scores are not unique

• Why are factor scores not unique? Because factor models must fix 
some parameters for identification
➢ The values may be indeterminate—but in CFA and in ML versions of EFA the rank order 

of the factor scores is unique

Factor Scores
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Draw Templin, Draw!
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Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)



• These factor scores are found using the same methods as 
are used in practice for finding test scores (like the GRE)
➢ The only difference between such test scores and factor scores in this class is 

the distributional assumptions of the measurement model (IRT is CFA with 
assumed Bernoulli/Multinomial distributed items)

➢ They behave the same

• That said, some in the testing industry don’t quite realize 
how these work

See: http://images.pearsonassessments.com/images/tmrs/Responses_Walter_Stroup.pdf (p. 2)

Factor Scores and Testing
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• Factor scores (by other names) are used in many domains
➢ Item response theory (CFA with categorical items): GRE scores are factor scores

• Because the historical relationship between CFA and 
exploratory factor analysis, factor scores are widely avoided
➢ In EFA factor meaning is unknown so rotations were used 

• Further making the issue even more difficult, many methods 
for determining factor scores have been developed
➢ See http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773873/ 

• We will only focus on one method for estimating factor scores 
that is used in nearly all fields based on the posterior 
distribution of the factor score given the data
➢ Identical to methods described by Lawley and Maxwell (1971) of Bartlett (1936)
➢ Also used in generalized linear mixed effects models where factor scores are called 

Best Linear Unbiased Predictors (or BLUPs)

More on Factor Scores
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• A factor score is the estimate of a subject’s unobserved latent trait

• Because this latent variable is not measured directly, it acts like it is 
missing data: you really cannot know with certainty its true value

• It is difficult to pin down what the missing data value (factor score 
value) should be precisely
➢ Each factor score has a posterior distribution of possible values

➢ Often, the mean of the posterior distribution is the “factor score” 
 In CFA, the mean is the most likely value

➢ Depending on the test, there may be a lot of error (variability) in the distribution

• Therefore, the use of factor scores must reflect that the score is not 
known and is represented by a distribution

Factor Scores: The Big Picture
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Draw Templin, Draw!
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Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)



• There are two ways of providing a score from the factor 
score posterior distribution:
➢ Expected a posteriori (EAP): the mean of the distribution

➢ Maximum a posteriori (MAP): the most likely score from the distribution

• In CFA factor score distributions are normal (so EAP=MAP)

How Distributions get Summarized into Scores

Missing Data: Final Lecture

MAP
MAP

EAP

EAP



• For EAP factor scores:

➢
෠𝐹𝑝 = 𝐸 𝑓 𝐹𝑝 𝐘

➢ 𝑆𝐸 ෠𝐹𝑝 = 𝑉𝑎𝑟 𝑓 𝐹𝑝 𝐘  

• For MAP factor scores:
➢

෠𝐹𝑝 = arg max
𝐹𝑝

𝑓 𝐹𝑝 𝐘

𝑆𝐸 ෠𝐹𝑝 = ฬ
𝜕2

𝜕𝐹𝑝
2 𝑓 𝐹𝑝 𝐘

෠𝐹𝑝

−
1

2
 (square root of Fisher’s information)

• For CFA (Normal Data/Normal Factor) measurement models:
➢ MAP = EAP
➢ Variance is identical across all people, regardless of score

• For non-CFA measurement models:
➢ MAP ≠ EAP (but does with infinite items)
➢ Standard error is a function of the factor score

Additional Information on Factor Scores
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• Recall Classical Test Theory’s model:
𝑌 = 𝑇 + 𝐸

• With reliability: 𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 +𝑉𝑎𝑟(𝐸)
 

• For factor scores:
➢ 𝑉𝑎𝑟 𝑇 = 𝜎𝐹

2: the (possibly estimated) variance of the factor

➢ 𝑉𝑎𝑟 𝐸 = 𝑆𝐸 ෠𝐹𝑝
2

: From the posterior distribution of the factor score

• Therefore, reliability of factor scores can be computed 
using model estimated parameters
➢ Caution: The factor model must fit to use these parameters!
➢ Caveat: We’ll soon see reliability for sum scores can be estimated by 

CFA model parameters

Tying Factor Scores to Classical Test Theory
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• For most (if not all) latent variable techniques, the factor scores 
come from Empirical Bayes estimation—meaning there is a prior 
distribution present 
➢ Empirical = some or all of the parameters of the distribution of the latent variable are 

estimated (i.e., factor mean and variance)

➢ Bayes = comes from the use of Bayes’ Theorem

• Prior == Assumed factor distribution with mean/variance

• This is true for all CFA, IRT, mixed/multilevel/hierarchical models
➢ And is true for models that don’t have a label (e.g., Poisson Factor Analysis?)

Factor Scores: Empirical Bayes Estimates
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• Bayes’ Theorem states the conditional distribution of a 
variable A (soon to be our factor score) given values of a 
variable B (soon to be our data) is:

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
=

𝑓 𝐵 𝐴 𝑓(𝐴)

׬
𝑎∈𝐴

𝑓 𝐵 𝐴 = 𝑎 𝑓 𝐴 = 𝑎 𝑑𝑎

• 𝑓 𝐴 𝐵  is the distribution of A, conditional on B
➢ We will come to know this as the posterior distribution of the factor score, 

conditional on the data observed or 𝑓 𝐅 𝐘

• 𝑓 𝐵 𝐴  is the distribution of B, conditional on A
➢ We will come to know this as our measurement model or 𝑓 𝐘 𝐅

• 𝑓 𝐴  is the marginal distribution of A
➢ We will come to know this as the prior distribution of the factor or 𝑓(𝐅)

Bayes’ Theorem
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For Categorical A, replace integral with sum



𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅) 

𝑓(𝐘)

• For 𝑓 𝐘 𝐅 , consider the measurement model (here CFA) for one item:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

   Where: 𝑒𝑝𝑖 ∼ 𝑁 0, 𝜓𝑖
2

 
• Using expected values, we can show the distribution for this one item is:

𝑓 𝑌𝑝𝑖|𝐹𝑝 ∼ 𝑁 𝜇𝑖 + 𝜆𝑖𝐹𝑝, 𝜓𝑖
2

 
• Therefore, for all 𝐼 items, our conditional distribution is:

𝑓 𝐘 𝐹𝑝 ∼ 𝑁𝐼 𝝁 + 𝚲𝐹𝑝, 𝚿

• With multiple factors, this becomes: 
𝑓 𝐘 𝐅 ∼ 𝑁𝐼 𝝁 + 𝚲𝐅, 𝚿

Putting Together the Pieces of Empirical Bayes Factor Scores
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𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐅 , consider the distribution assumed by the factor:
➢ For one factor

𝑓 𝐹𝑝 ∼ 𝑁 𝜇𝐹 , 𝜎𝐹
2

➢ For multiple factors K

𝑓 𝐅 ∼ 𝑁𝐾 𝛍𝐹 , 𝚽

• We must pick an identification method which determines if 
certain parameters of 𝛍𝐹  and 𝚽 are fixed or are estimated
➢ Any method identification works, so we keep 𝛍𝐹  and 𝚽 throughout

 

Putting Together the Pieces of Empirical Bayes Factor Scores
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𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐘 , we return to the model-implied mean vector and 
covariance matrix:

𝑓 𝐘 ∼ 𝑁𝐼 𝛍 + 𝚲𝑇𝛍𝐹 , 𝚲𝚽𝚲𝑇 + 𝚿

Putting Together the Pieces of Empirical Bayes Factor Scores
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• For two random variables 𝑥 and 𝑧, a conditional 
distribution is written as: 𝑓 𝑧 𝑥

• The conditional distribution is also equal to the joint 
distribution divided by the marginal distribution of the 
conditioning random variable

𝑓 𝑧 𝑥 =
𝑓(𝑧, 𝑥)

𝑓(𝑥)

• Therefore, the joint distribution can be found by the 
product of the conditional and marginal distributions:

𝑓 𝑧, 𝑥 = 𝑓 𝑧 𝑥 𝑓 𝑥

• We can use this result in our analysis:
𝑓 𝐘 𝐅 𝑓 𝐅 = 𝑓(𝐘, 𝐅)

A Quick Reminder About Types of Distributions
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• If 𝐗 is distributed multivariate normally: 

Conditional distributions of 𝐗 are multivariate normal

• We can show that 𝑓 𝐘, 𝐅 , the joint distribution of the 
data and the factors, is multivariate normal

• We can then use the result above (shown on the next 
slides) to show that our posterior distribution of the 
factor scores is also multivariate normal
➢ This result only applies for measurement models assuming normally 

distributed data and normally distributed factors: CFA

➢ For IRT (and other measurement models), this result will not hold—but this 
distribution is asymptotically normal as the number of items gets large

 

A Quick Reminder about Multivariate Normal Distributions
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• The conditional distribution of sets of variables from a 
MVN is also MVN

• If we were interested in the distribution of the first q 
variables, we partition three matrices:

➢The data: 𝐗1:(𝑁 𝑥 𝑞) 𝐗2:(𝑁 𝑥 𝑝−𝑞)

➢The mean vector: 
𝝁1:(𝑞 𝑥 1)

𝝁2:(𝑝−𝑞 𝑥 1)

➢The covariance matrix: 
𝚺11:(𝑞 𝑥 𝑞) 𝚺12:(𝑞 𝑥 𝑝−𝑞)

𝚺21:(𝑝−𝑞 𝑥 𝑞) 𝚺22:(𝑝−𝑞 𝑥 𝑝−𝑞)

Conditional Distributions of MVN Variables are Multivariate Normal 
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• The, 𝑓 𝐗1 𝐗2 , conditional distribution of 𝐗1 given the 
values of 𝐗2 = 𝐱2 is then:

𝐗1|𝐗2~𝑁𝑞 𝝁∗, 𝚺∗

Where (using our partitioned matrices):

𝝁∗ = 𝝁1 + 𝚺12𝚺22
−1 𝐱2

𝑇 − 𝝁𝟐

And:
𝚺∗ = 𝚺11 − 𝚺12𝚺22

−1𝚺21

Conditional Distributions of MVN Variables
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• The joint distribution of all 𝐼 items and 𝐾 factor scores is

𝑓 𝐘, 𝐅 = 𝑓
𝐘
𝐅

= 𝑁𝐼+𝐾
𝝁 + 𝚲𝑇𝝁𝐹

𝝁𝐹
, 𝚲𝚽𝚲𝑇 + 𝚿 𝚲𝚽

𝚽𝚲𝑇 𝚽

• Using the conditional distributions of MVNs result:

𝑓 𝐅𝑝 𝐘𝑝  is MVN:

With mean: 𝝁𝐹 + 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝐘𝑝
𝑇 − 𝝁

And Covariance: 𝚽 − 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝚲𝚽

#WTFTemplin

Derive, Templin, Derive!
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• When using measurement models assuming normally 
distributed data and normally distributed factors (CFA):
➢ The posterior distribution of the factor scores is MVN

➢ Therefore, the most likely factor score (MAP) and the expected factor score 
(EAP) is given by the mean from the previous slides

➢ The factor score is a function of the model parameter estimates and the data

 

What All That Math Means for Factor Scores
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LINKING SUM SCORES AND CTT TO 
MEASUREMENT MODELS VIA FACTOR SCORES 
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• Sum scores have a correlation of 1.0 with factor scores 
from a parallel items CFA model
➢ Parallel items model: all factor loadings equal + all unique variances equal

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1;  𝑒𝑝1 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3;  𝑒𝑝3 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5;  𝑒𝑝5 ∼ 𝑁 0, 𝜓2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1

Connecting Sum Scores and Factor Scores
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Comparing a PI Model Factor Score to a Sum Score
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• To look more closely at factor scores versus sum scores, 
consider the following five people in the data set

Comparing for Specific Scores
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• Good model fit…

• We could use the 
model

• So, we could
use the factor
scores or the
sum scores

• But we won’t!

Before We Get Too Far…Did The Model Fit?
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• Factor score reliability is:

𝜌 =
𝜎𝐹

2

𝜎𝐹
2 + 𝑆𝐸 𝐹𝑝

2

• lavaan does not compute the factor score standard errors 
(Mplus does)…but that’s okay, because we can grab them 
from the matrix algebra on p. 35

And…About Reliability

Missing Data: Final Lecture



R Syntax for Computing SE of Factor Scores

Missing Data: Final Lecture

Reliability of Factor Score = .73

What about the reliability of our sum scores?



• In CTT the unit of analysis is the test score:
𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑝 + 𝐸𝑝

• In CFA the unit of analysis is the item:
𝑌𝑝𝑖 = 𝜇𝐼𝑖

+ 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

• To map CFA onto CTT, we must put these together:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 = ෍

𝑖=1

𝐼

𝑌𝑝𝑖

Classical Test Theory from a CFA Perspective
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• Because CFA is an item-based model, we can then substitute each 
item’s model into the sum:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 = ෍

𝑖=1

𝐼

𝑌𝑝𝑖 = ෍

𝑖=1

𝐼

𝜇𝐼𝑖
+ 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

= ෍

𝑖=1

𝐼

𝜇𝐼𝑖
+ ෍

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 + ෍

𝑖=1

𝐼

𝑒𝑝𝑖

• Mapping this onto true score and error from CTT:

𝑇 = ෍

𝑖=1

𝐼

𝜇𝐼𝑖
+ ෍

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 = ෍

𝑖=1

𝐼

𝑒𝑝𝑖

Further Unpacking of the Total Score Formula
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• From:

𝑇 = ෍

𝑖=1

𝐼

𝜇𝐼𝑖
+ ෍

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 = ෍

𝑖=1

𝐼

𝑒𝑝𝑖

• 𝑉𝑎𝑟 𝑇 = 𝑉𝑎𝑟 σ𝑖=1
𝐼 𝜇𝐼𝑖

+ σ𝑖=1
𝐼 𝜆𝑖

2 𝑉𝑎𝑟 𝐹𝑝 =

෍

𝑖=1

𝐼

𝜆𝑖

2

𝜎𝐹
2

• 𝑉𝑎𝑟 𝐸 = 𝑉𝑎𝑟 σ𝑖=1
𝐼 𝑒𝑝𝑖 =

෍

𝑖=1

𝐼

𝜓𝑖
2

For models with correlated residuals, those add to Var(E)

CFA-Model Estimated Reliability of Sum Scores
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• From the previous slide:

𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 + 𝑉𝑎𝑟 𝐸
=

σ𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2

σ𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2 + σ𝑖=1
𝐼 𝜓𝑖

2

• And…we can do this in lavaan syntax:

• The estimated reliability is….

CFA-Model Estimated Reliability of Sum Scores
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• The CFA-Estimated reliability is for the sum score, not the 
factor score

• The sum score’s reliability is .629 (SE = .025); 
the factor score’s reliability is .73
➢ The difference comes from additional sources of error in the factor score:

 Sampling error

 Error from the prior distribution (squishing the variance of the factor/error)

• The sum score’s reliability is equal to the 
Spearman Brown reliability estimate
➢ Therefore, CTT reliability estimates can come from CFA….

Notes on CFA-Estimated Reliabilities

Missing Data: Final Lecture



• Another model to consider is the Tau-equivalent items 
model, which, for CFA, means equal loadings but different 
unique variances:

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1;  𝑒𝑝1 ∼ 𝑁 0, 𝜓1
2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3;  𝑒𝑝3 ∼ 𝑁 0, 𝜓3
2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5;  𝑒𝑝5 ∼ 𝑁 0, 𝜓5
2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1

Comparing Other CFA Models with Sum Scores
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• Note: shown for didactic purposes (don’t use this model)

• Yielding model fit indices of:

The Tau Equivalent Model in lavaan
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Parameter Estimates vs. Factor Score vs. Sum Score
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• Now what matters is which item had a higher score…
➢ Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information

Factor vs. Sum Score…by item
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• Factor score reliability estimate: .73

• Sum score reliability estimate: .62

• The sum score reliability is actually coefficient alpha
➢ Cronbach’s alpha (1951) /Guttman’s Lambda 6 (1945)

• HUGE NOTE: THIS IS WHY RELIABILTY IS NOT AN INDEX OF 
MODEL FIT
➢ IT CAN BE SHOWN TO DEPEND ON PARAMETERS THAT WILL BE BIASED UNDER 

MISFITTING MODELS

Tau Equivalent Reliability for Factor and Sum Scores
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• All of the previous slides were to get us to see the 
relationship between sum scores and CFA models
➢ We would never estimate either…we would use an unrestricted CFA model

➢ Here is what happens with an that unrestricted CFA model

• This model fits perfectly—so no need to check model fit

• Compared to the other two models (we reject CTT)

Finally…the Unrestricted CFA Model
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Parameter Estimates vs. Factor Score vs. Sum Score
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• Now what matters is which item had a higher score…
➢ Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information

Factor Scores by Sum Score…by item
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• Factor score reliability estimate: .734

• Sum score reliability estimate: .636

• The sum score reliability is sometimes called coefficient 
omega (see McDonald, 1999)

• If all three models fit the data then

Omega > Alpha > Spearman Brown

 But…the differences are very small

CFA Equivalent Reliability for Factor and Sum Scores
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• Measurement error 
➢ e.g., the 𝑆𝐸 ෠𝐹

• Model misspecification error of various types:
➢ Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
➢ Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
➢ Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

➢ Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

➢ Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
➢ How you treat missing responses to items makes even more untenable assumptions

• Sampling error

• Prior Distribution Error
➢ e.g., factor scores are “shrunken estimates”

Potential Sources of Error in a Factor Score

Missing Data: Final Lecture



• Up to this point we have seen
➢ Assumptions underlying sum scores
➢ Definitions of factor scores
➢ How sum scores imply a very specific CFA model

• We have also seen a history of reliability:
➢ Spearman Brown (1910): Parallel items model 

 Equal loadings/unique variances
➢ Guttman/Cronbch Alpha (1945,1953): Tau equivalent items model

 Equal loadings
➢ Coefficient omega (source unknown): Unrestricted CFA model
➢ Reliability for factor scores
➢ Also note: the next step is conditional reliability (IRT models)

• The point is that if you are ever reporting scores but not using them 
in subsequent analyses, then use a factor score

• But what we haven’t seen is what to do when we cannot use a 
simultaneous analysis/SEM 

➢ And that answer will have to come during the next lecture…

So….?
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SECONDARY ANALYSES WITH SCORES
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• To introduce and motivate SEM, and to review some 
prerequisites, we will make use of an example data set

• Data come from a (simulated) sample of 150 participants 
who provided self-reports of a happiness scale and their 
marital status

• Participant responded one survey:
➢ 5-item happiness survey (each item used roughly a 5-point Likert scale)

➢ 1-item marital status question (are you married? Yes/No)

• The researchers were interested in the effects of marital 
status on happiness

A Blast from the Past…
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• Variables that are measured with error are represented as 
“latent” constructs in SEM
➢ The latent variables are estimated directly by the model

➢ Any equations involving latent variables are estimated simultaneously

• A more accurate depiction of our example:

In SEM, We Don’t Need a Sum Score
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Measurement Model: 
Confirmatory Factor 

Analysis

Structural Equation 
Model: Predicting 

Happiness Latent Variable



𝑋𝑝1 = 𝜇1 + 𝜆1𝐻𝑃𝑃𝑝 + 𝑒𝑝1

𝑋𝑝2 = 𝜇2 + 𝜆2𝐻𝑃𝑃𝑝 + 𝑒𝑝2

𝑋𝑝3 = 𝜇3 + 𝜆3𝐻𝑃𝑃𝑝 + 𝑒𝑝3

𝑋𝑝4 = 𝜇4 + 𝜆4𝐻𝑃𝑃𝑝 + 𝑒𝑝4

𝑋𝑝5 = 𝜇5 + 𝜆5𝐻𝑃𝑃𝑝 + 𝑒𝑝5

𝐻𝑃𝑃𝑝 = 𝛽0 + 𝛽1𝑀𝑎𝑟𝑟𝑖𝑒𝑑𝑝 + 𝑒𝑝
𝐻𝑃𝑃

Simultaneous Equations Implied by Path Diagram
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SEM is often called 
Path Analysis with 
Latent Variables



• The SEM analysis (simultaneous) is the ideal: 
here is the syntax and the results

Example Data: SEM Analysis
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• A common way of depicting SEMs is with a path diagram→ 
a pictorial representation of the statistical model
➢ Observed variables: Squares

➢ Latent variables: Circles

➢ Direct effects: Arrows with one head

➢ Indirect effects: Arrows with two heads

• From our previous 
GLM example

• Here MRR is marital 
status and hp_ is the 
happiness sum score 

Path Diagram of Same Analysis with Sum Score
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• The sum score analysis shows a different result:

Where is the model fit?

Results:

Same Analysis with Sum Score: Syntax and Results
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• To conduct the same analysis with a factor score instead of 
a sum score, there are two steps needed

1. Run a CFA model only; check fit; obtain factor score estimate

2. Run secondary analysis with factor score as observed variable

• Step 1: Obtaining the factor score: 
use only the measurement model

Analysis using a Factor Score
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• Model fit:

• Good model fit—lets now use the factor score 

Obtaining the Factor Score: Checking for Model Fit
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• Where is model fit?

• Results:

Using the Factor Score in the Analysis
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Model Standardized 
Estimate (no.x)

Std Estimate 
Standard Error

Std Estimate 
p-value

Estimated 
R-Square

Simultaneous SEM 0.546 0.372 0.142 0.074

Sum Score 0.416 0.158 0.008 0.043

Factor Score 0.311 0.164 0.058 0.024

Side-by-Side Comparison
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HOW TO INCORPORATE SCORES INTO 
SECONDARY ANALYSES
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• So far we have seen sum scores and factor scores and discussed 
their similarities and differences

• For secondary analyses:
➢ Sum scores by themselves will not work because they do not provide any 

mechanism to detect for model misspecification and they ignore 
measurement error
 Model misspecification error is likely much worse than any other type

➢ Factor scores by themselves will not work because they ignore 
measurement error
 Ensuring CFA model fit will help omit some misspecification error

• We will use factor scores as they are less prone to model 
misspecification error
➢ But, we cannot use just one factor score as it will have measurement error present

• We will treat factor scores as missing data and multiply impute 
“plausible values” for multiple analyses with factor scores
➢ e.g. Mislevy, Johnson, & Muraki (1992): Scaling procedures in NAEP

How to Incorporate Scores into Secondary Analyses
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• Dealing with missing data is important, as the mechanisms 
you choose can dramatically alter your results

• This point was not fully realized when the first methods for 
missing data were created
➢ Each of the methods described in this section should never be used

➢ Given to show perspective – and to allow you to understand what happens if 
you were to choose each

• If we think of the factor score (or true score from CTT) as 
being missing, then the use of a factor score or sum score 
is analogous to a single imputation

From a Missing Data Lecture: 
Bad Ways to Handle Missing Data
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• Single imputation methods replace missing data with 
some type of value
➢ Single: one value used

➢ Imputation: replace missing data with value

• Upside: can use entire data set if missing values are 
replaced

• Downside: biased parameter estimates and standard 
errors (even if missing is MCAR)
➢ Type-I error issues

• Still: never use these techniques

From a Missing Data Lecture: Single Imputation Methods
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• Overall, the methods described in this section are not 
useful for handling missing data

• If you use them you will likely get a statistical answer that 
is an artifact
➢ Actual estimates you interpret (parameter estimates) will be biased 

(in either direction)

➢ Standard errors will be too small
 Leads to Type-I Errors

• Putting this together: you will likely end up making 
conclusions about your data that are wrong

Why Single Imputation Is Bad Science
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MULTIPLE IMPUTATION
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• Rather than using single imputation, a better method is to 
use multiple imputation
➢ The multiply imputed values will end up adding variability to analyses – 

helping with biased parameter and SE estimates

• Multiple imputation is a mechanism by which you “fill in” 
your missing data with “plausible” values
➢ End up with multiple data sets – need to run multiple analyses

➢ Missing data are predicted using a statistical model using the observed data 
(the MAR assumption) for each observation

• MI is possible due to statistical assumptions
➢ For CFA, we are helped by the fact that our data are multivariate normal

Multiple Imputation
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1. Imputation: The missing data are filled in a number of 
times (say, m times) to generate m complete data sets
➢ For us, this is the factor score—drawn at random from each person’s factor 

score distribution

2. Analysis: The m complete data sets are analyzed using 
standard statistical analyses
➢ For each data set we then use lavaan like we normally would with the 

imputed factor score as an observed variable 

3. Results Pooling: The results from the m complete data 
sets are combined to produce inferential results
➢ We then combine each of our m analyses to produce the final analysis 

statistics from which we draw our conclusions and inferences

Multiple Imputation Steps
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• The key idea behind multiple imputation is that each 
missing value has a distribution of likely values
➢ The distribution reflects the uncertainty about what the variable may

have been--this is pretty obvious for us as factor scores have distributions

• By contrast, single imputation (using just the factor score 
or the sum score in an analysis), disregards the 
uncertainty in each missing data point
➢ Results from singly imputed data sets may be biased or have higher 

Type-I errors

• Uncertainty == measurement error in when using scales

Distributions: The Key to Multiple Imputation
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• Recall from last time: there are two ways of providing a 
score from the factor score posterior distribution:
➢ Expected a posteriori (EAP): the mean of the distribution

➢ Maximum a posteriori (MAP): the most likely score from the distribution

• In CFA factor score distributions are normal (so EAP=MAP)

How Distributions get Summarized into Scores
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MAP
MAP

EAP

EAP



Idea Behind Multiple Imputation: Don’t Summarize
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EXAMPLE IMPUTATION ANALYSIS: 
PREDICTING HAPPINESS 
(FROM OUR FIRST LECTURE)
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• The first step is to create multiple data sets drawing a 
factor score for each person

• Recall the factor scores for each person (in CFA) follow a 
normal distribution with the mean and variance coming 
from model parameters:

• Using the conditional distributions of MVNs result:

𝑓 𝐅𝑝 𝐘𝑝  is MVN:

With mean: 𝝁𝐹 + 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝐘𝑝
𝑇 − 𝝁

And Covariance: 𝚽 − 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝚲𝚽

#WTFTemplin

Imputation Preliminary Information
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Preliminary Imputation Information
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Step #1: Generate Multiple Data Sets of Randomly-Drawn 
Factor Scores (Plausible Values)

Missing Data: Final Lecture



Sequence of Imputed Factor Scores for Observation #1
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• In the pooling phase, the results are pooled and reported

• For parameter estimates, the pooling is straight forward
➢ The estimated parameter is the average parameter value across all 

imputed data sets 
 For our example the average slope comes from the average slope of all 

1000 analyses

• For standard errors, pooling is more complicated
➢ Have to worry about sources of variation:

 Variation from sampling error that would have been present had the data not 
been missing

 Variation from sampling error resulting from missing data

Pooling Parameters from Analyses of Imputed Data Sets
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• Standard error information comes from two sources of 
variation from imputation analyses (for 𝑚 imputations)

• Within Imputation Variation:

𝑉𝑊 =
1

𝑚
෍

𝑖=1

𝑚

𝑆𝐸𝑖
2

• Between Imputation Variation (here 𝜃 is an estimated 
parameter from an imputation analysis):

𝑉𝐵 =
1

𝑚 − 1
෍

𝑖=1

𝑚

መ𝜃𝑖 − ҧ𝜃
2

• Then, the total sampling variance is: 𝑉𝑇 = 𝑉𝑊 + 𝑉𝐵 +
𝑉𝐵

𝑀

• The subsequent (imputation pooled) SE is 𝑆𝐸 = 𝑉𝑇

Pooling Standard Errors Across Imputation Analyses
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• Using the runMI function from the semTools package, we 
can conduct the imputation

Step #2 (Analysis) and Step #3 (Pooling)
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Model Standardized 
Estimate (no.x)

Std Estimate 
Standard Error

Std Estimate 
p-value

Estimated 
R-Square

Simultaneous SEM 0.546 0.372 0.142 0.074

Sum Score 0.416 0.158 0.008 0.043

Factor Score 0.311 0.164 0.058 0.024

Factor Score 
Imputation

0.238 0.161 0.139 0.014

Side-by-Side Comparison
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WAYS TO REDUCE ERROR IN 
SECONDARY ANALYSES
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• For each source of error in a secondary analysis there are 
ways to reduce that error so that secondary analyses are 
able to be completed with a good degree of accuracy

• Some of the ways to do so are very difficult if not 
impossible with current methods…Some are very possible

• All of the following slides assume that no sum-score 
analysis is used: only factor score-based analyses 
with imputation

• This section outlines each source of error and how to 
reduce such error

Ways to Reduce Error in Secondary Analyses
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• To reduce measurement error:
➢ Have a larger number of high-quality and highly informative items measure 

each factor

• Ramifications of reducing this type of error:
➢ Greater reliability for the factor score/lessened measurement error

➢ Greater power

➢ Less need for large number of imputation steps

• Statistical methods needed if error is present:
➢ Multiple imputation of plausible values of factor scores using factor score 

distribution from measurement model-only analysis

• Difficulties in error reduction approach above:
➢ More items makes achieving model fit much more difficult

Ways to Reduce the Impact of Measurement Error
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• To reduce prior factor score distribution error:
➢ Have a larger number of high-quality and highly informative items measure each 

factor

• Ramifications of reducing this type of error:
➢ More items makes the information from the data overwhelm the information from 

the prior distribution
➢ Greater reliability for the factor score/lessened measurement error
➢ Greater power
➢ Less need for large number of imputation steps

• Statistical methods needed if this type of error is present:
➢ Multiple imputation of plausible values of factor scores using factor score 

distribution from measurement model-only analysis

• Difficulties in error reduction approach above:
➢ More items makes achieving model fit much more difficult

Ways to Reduce the Impact of Prior Factor Score Distribution Error
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• To reduce sampling error:
➢ Have a large sample size

• Ramifications of reducing this type of error:
➢ Greater power for testing hypotheses
➢ Greater stability of factor score distributions
➢ Less need for large number of imputation steps

• Statistical methods needed if this type of error is present:
➢ Multiple imputation of plausible values of factor scores using multiply 

imputed factor score distribution from measurement model-only analysis
➢ All can be accomplished in an MCMC analysis where all parameters are 

estimated simultaneously with factor scores

• Difficulties in error reduction approach above:
➢ Hard to collect sample

Ways to Reduce the Impact of Sampling Error
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• To reduce ML Estimator Bias error:
➢ Have a large sample size – and – 
➢ Use an algorithm that uses the distribution of the residuals rather than the 

data (e.g., Residual ML vs. ML—but in a Bayesian context when imputing 
factor scores)

• Ramifications of reducing this type of error:
➢ More accurate estimates of factor score distributions
➢ Better Type-I error rate prevention in small sample sizes

• Statistical methods needed if this type of error is present:
➢ Analysis algorithms with REML-based distributions

• Difficulties in error reduction approach above:
➢ Very few exist for CFA
➢ Existing algorithms often not able to provide all information needed 

for analyses

Ways to Reduce the Impact ML Estimator Bias Error
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• To reduce model misspecification error due to dimensionality, 
parameter constraints, and linear predictor function:
➢ Achieve good model fit in your measurement model

• Ramifications of reducing this type of error:
➢ More accurate estimates of factor score distributions

➢ Better Type-I error rate prevention in small sample sizes

➢ Better Type-II error rate prevention

➢ More accurate results

• Statistical methods needed if this type of error is present:
➢ Any analysis algorithm with indications of goodness of model fit

• Difficulties in error reduction approach above:
➢ Harder to get model fit in Bayesian methods—and with non-normal 

data distributions

Ways to Reduce the Impact Model Misspecification Error of Types:
Dimensionality, Constraints, and Linear Predictor Function
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• To reduce model misspecification error due to data 
distributional assumptions:
➢ Estimate your measurement model using multiple 

assumed distributions then compare model fit using methods like the Vuong test

• Ramifications of reducing this type of error:
➢ More accurate estimates of factor score distributions
➢ Better Type-I error rate prevention in small sample sizes
➢ Better Type-II error rate prevention
➢ Much more accurate results

• Statistical methods needed if this type of error is present:
➢ Estimators for multiple types of data and post-estimator model comparisons

• Difficulties in error reduction approach above:
➢ Methods only exist for a handful (if any);
➢ To the best of my knowledge, not currently possible without developing your own 

software

Ways to Reduce the Impact Model Misspecification Error of Due to 
Data Distributional Assumption Error
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• To reduce model misspecification error due to factor
distributional assumptions:
➢ Estimate multiple measurement models using multiple 

assumed factor distributions and multiple assumed data distributions then 
compare model fit using methods like the Vuong test

• Ramifications of reducing this type of error:
➢ More accurate estimates of factor score distributions
➢ Better Type-I error rate prevention in small sample sizes
➢ Better Type-II error rate prevention
➢ Much more accurate results

• Statistical methods needed if this type of error is present:
➢ Estimators for multiple types of data, multiple types of factor distributions, 

and post-estimator model comparisons

• Difficulties in error reduction approach above:
➢ To the best of my knowledge, not currently possible without developing your own 

software

Ways to Reduce the Impact Model Misspecification Error of Due to 
Factor Distributional Assumption Error

Missing Data: Final Lecture
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• Anything you do with an estimated test score is single 
imputation—and all analyses after that are likely suspect

• There are so many things in educational measurement that 
only use one score that they are too numerous to count
➢ Validity studies

➢ Antiquated model fit methods

• The use of methods like these will improve your research 
by eliminating results that are purely due to chance
➢ You will not be chasing what very well may be noisy results

➢ Good topic discussion (different context-multiple comparisons but still valid 
here)

Wrapping Up

Missing Data: Final Lecture


	Slide 1: On Test Scores and Missing Data
	Slide 2: Today’s Class
	Slide 3: The Big Picture
	Slide 4: What’s In a Sum Score? 
	Slide 5: The Purpose of this Lecture: Some Clarity on Score
	Slide 6: Demonstration Data
	Slide 7: Distribution of GRI Sum Scores
	Slide 8: Psychometric Properties of as Sum Score
	Slide 9: Differences Among Measurement Models
	Slide 10: Classical Test Theory: Assumed Model
	Slide 11: More CTT Basics
	Slide 12: Moving from Variance to Reliability
	Slide 13: Parceling: Creating Another Type of Sum Score
	Slide 14: Potential Sources of Error in a Sum Score
	Slide 15: Why Error Matters
	Slide 16: 95% Confidence Intervals: Quantitative (GRE 2011 Guide) SEM ranges from 9 to 55
	Slide 17: Factor Scores
	Slide 18: Factor Scores
	Slide 19: Draw Templin, Draw!
	Slide 20: Factor Scores and Testing
	Slide 21: More on Factor Scores
	Slide 22: Factor Scores: The Big Picture
	Slide 23: Draw Templin, Draw!
	Slide 24: How Distributions get Summarized into Scores
	Slide 25: Additional Information on Factor Scores
	Slide 26: Tying Factor Scores to Classical Test Theory
	Slide 27: Factor Scores: Empirical Bayes Estimates
	Slide 28: Bayes’ Theorem
	Slide 29: Putting Together the Pieces of Empirical Bayes Factor Scores
	Slide 30: Putting Together the Pieces of Empirical Bayes Factor Scores
	Slide 31: Putting Together the Pieces of Empirical Bayes Factor Scores
	Slide 32: A Quick Reminder About Types of Distributions
	Slide 33: A Quick Reminder about Multivariate Normal Distributions
	Slide 34: Conditional Distributions of MVN Variables are Multivariate Normal 
	Slide 35: Conditional Distributions of MVN Variables
	Slide 36: Derive, Templin, Derive!
	Slide 37: What All That Math Means for Factor Scores
	Slide 38: Linking Sum Scores and CTT to Measurement Models Via Factor Scores 
	Slide 39: Connecting Sum Scores and Factor Scores
	Slide 40: Comparing a PI Model Factor Score to a Sum Score
	Slide 41: Comparing for Specific Scores
	Slide 42: Before We Get Too Far…Did The Model Fit?
	Slide 43: And…About Reliability
	Slide 44: R Syntax for Computing SE of Factor Scores
	Slide 45: Classical Test Theory from a CFA Perspective
	Slide 46: Further Unpacking of the Total Score Formula
	Slide 47: CFA-Model Estimated Reliability of Sum Scores
	Slide 48: CFA-Model Estimated Reliability of Sum Scores
	Slide 49: Notes on CFA-Estimated Reliabilities
	Slide 50: Comparing Other CFA Models with Sum Scores
	Slide 51: The Tau Equivalent Model in lavaan
	Slide 52: Parameter Estimates vs. Factor Score vs. Sum Score
	Slide 53: Factor vs. Sum Score…by item
	Slide 54: Tau Equivalent Reliability for Factor and Sum Scores
	Slide 55: Finally…the Unrestricted CFA Model
	Slide 56: Parameter Estimates vs. Factor Score vs. Sum Score
	Slide 57: Factor Scores by Sum Score…by item
	Slide 58: CFA Equivalent Reliability for Factor and Sum Scores
	Slide 59: Potential Sources of Error in a Factor Score
	Slide 60: So….?
	Slide 61: Secondary Analyses with Scores
	Slide 62: A Blast from the Past…
	Slide 63: In SEM, We Don’t Need a Sum Score
	Slide 64: Simultaneous Equations Implied by Path Diagram
	Slide 65: Example Data: SEM Analysis
	Slide 66: Path Diagram of Same Analysis with Sum Score
	Slide 67: Same Analysis with Sum Score: Syntax and Results
	Slide 68: Analysis using a Factor Score
	Slide 69: Obtaining the Factor Score: Checking for Model Fit
	Slide 70: Using the Factor Score in the Analysis
	Slide 71: Side-by-Side Comparison
	Slide 72: How To Incorporate Scores Into  Secondary Analyses
	Slide 73: How to Incorporate Scores into Secondary Analyses
	Slide 74: From a Missing Data Lecture:  Bad Ways to Handle Missing Data
	Slide 75: From a Missing Data Lecture: Single Imputation Methods
	Slide 76: Why Single Imputation Is Bad Science
	Slide 77: Multiple Imputation
	Slide 78: Multiple Imputation
	Slide 79: Multiple Imputation Steps
	Slide 80: Distributions: The Key to Multiple Imputation
	Slide 81: How Distributions get Summarized into Scores
	Slide 82: Idea Behind Multiple Imputation: Don’t Summarize
	Slide 83: Example Imputation Analysis:  Predicting Happiness  (from our First Lecture)
	Slide 84: Imputation Preliminary Information
	Slide 85: Preliminary Imputation Information
	Slide 86: Step #1: Generate Multiple Data Sets of Randomly-Drawn Factor Scores (Plausible Values)
	Slide 87: Sequence of Imputed Factor Scores for Observation #1
	Slide 88: Pooling Parameters from Analyses of Imputed Data Sets
	Slide 89: Pooling Standard Errors Across Imputation Analyses
	Slide 90: Step #2 (Analysis) and Step #3 (Pooling)
	Slide 91: Side-by-Side Comparison
	Slide 92: Ways To Reduce Error in  Secondary Analyses
	Slide 93: Ways to Reduce Error in Secondary Analyses
	Slide 94: Ways to Reduce the Impact of Measurement Error
	Slide 95: Ways to Reduce the Impact of Prior Factor Score Distribution Error
	Slide 96: Ways to Reduce the Impact of Sampling Error
	Slide 97: Ways to Reduce the Impact ML Estimator Bias Error
	Slide 98: Ways to Reduce the Impact Model Misspecification Error of Types: Dimensionality, Constraints, and Linear Predictor Function
	Slide 99: Ways to Reduce the Impact Model Misspecification Error of Due to Data Distributional Assumption Error
	Slide 100: Ways to Reduce the Impact Model Misspecification Error of Due to Factor Distributional Assumption Error
	Slide 101: Wrapping Up
	Slide 102: Wrapping Up

