Higher-Order Models (CFA with MLR and IFA with WLSMV) lavaan

if (!require(lavaan)) install.packages("lavaan")
## Loading required package: lavaan
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
library(lavaan)

Example data: 1336 college students self-reporting on 49 items (measuring five factors) assessing childhood maltreatment: Items are answered on a 1–5 scale: 1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree. The items are NOT normally distributed, so we’ll use both CFA with MLR and IFA with WLSMV as two options to examine the fit of these models (as an example of how to do each, but NOT to compare between estimators).

1. Spurning: Verbal and nonverbal caregiver acts that reject and degrade a child

2. Terrorizing: Caregiver behaviors that threaten or are likely to physically hurt, kill, abandon, or place the child or the child’s loved ones or objects in recognizably dangerous situations.

3. Isolating: Caregiver acts that consistently deny the child opportunities to meet needs for interacting or communicating with peers or adults inside or outside the home.

4. Corrupting: Caregiver acts that encourage the child to develop inappropriate behaviors (self-destructive, antisocial, criminal, deviant, or other maladaptive behaviors).

5. Ignoring: Emotional unresponsiveness includes caregiver acts that ignore the child’s attempts and needs to interact (failing to express affection, caring, and love for the child) and show no emotion in interactions with the child

abuseData = read.csv(file = "abuse.csv", col.names = c("ID", paste0("p0",1:9), paste0("p",10:57)))

First, we separately build each one-factor model:

spurningSyntax = "
spurn =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54
"
spurningEstimatesMLR = cfa(model = spurningSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
fitResultsMLR = data.frame(Model = "Spurning", rbind(inspect(object = spurningEstimatesMLR, what = "fit")), stringsAsFactors = FALSE)

spurningEstimatesWLSMV = cfa(model = spurningSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV", 
                             ordered = c("p06", "p10", "p14", "p25", "p27", "p29", "p33", "p35", "p48", "p49", "p53", "p54"),
                             parameterization = "theta")
fitResultsWLSMV = data.frame(Model = "Spurning", rbind(inspect(object = spurningEstimatesWLSMV, what = "fit")), stringsAsFactors = FALSE)

spurningParams = cbind(inspect(object = spurningEstimatesMLR, what = "std")$lambda, inspect(object = spurningEstimatesWLSMV, what = "std")$lambda) 
colnames(spurningParams) = c("spurningMLR", "spurningWLSMV")


terrorizingSyntax = "
terror =~ p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56
"
terrorizingEstimatesMLR = cfa(model = terrorizingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
fitResultsMLR = rbind(fitResultsMLR, c("Terrorizing", inspect(object = terrorizingEstimatesMLR, what = "fit")))

terrorizingEstimatesWLSMV = cfa(model = terrorizingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV", 
                             ordered = c("p07", "p11", "p13", "p17", "p24", "p26", "p36", "p55", "p56"), parameterization = "theta")
fitResultsWLSMV = rbind(fitResultsWLSMV, c("Terrorizing", inspect(object = terrorizingEstimatesWLSMV, what = "fit")))

terrorizingParams = cbind(inspect(object = terrorizingEstimatesMLR, what = "std")$lambda, inspect(object = terrorizingEstimatesWLSMV, what = "std")$lambda) 
colnames(terrorizingParams) = c("terrorizingMLR", "terrorizingWLSMV")


isolatingSyntax = "
isolate =~ p01 + p18 + p19 + p23 + p39 + p43
"

isolatingEstimatesMLR = cfa(model = isolatingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
fitResultsMLR = rbind(fitResultsMLR, c("Isolating", inspect(object = isolatingEstimatesMLR, what = "fit")))

isolatingEstimatesWLSMV = cfa(model = isolatingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV", 
                             ordered = c("p01", "p18", "p19", "p23", "p39", "p43"), parameterization = "theta")
fitResultsWLSMV = rbind(fitResultsWLSMV, c("Isolating", inspect(object = isolatingEstimatesWLSMV, what = "fit")))

isolatingParams = cbind(inspect(object = isolatingEstimatesMLR, what = "std")$lambda, inspect(object = isolatingEstimatesWLSMV, what = "std")$lambda) 
colnames(isolatingParams) = c("isolatingMLR", "isolatingWLSMV")

corruptingSyntax = "
corrupt =~ p09 + p12 + p16 + p20 + p28 + p47 + p50
"

corruptingEstimatesMLR = cfa(model = corruptingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
fitResultsMLR = rbind(fitResultsMLR, c("Corrupting", inspect(object = corruptingEstimatesMLR, what = "fit")))

corruptingEstimatesWLSMV = cfa(model = corruptingSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV", 
                             ordered = c("p09", "p12", "p16", "p20", "p28", "p47", "p50"), parameterization = "theta")
fitResultsWLSMV = rbind(fitResultsWLSMV, c("Corrupting", inspect(object = corruptingEstimatesWLSMV, what = "fit")))

corruptingParams = cbind(inspect(object = corruptingEstimatesMLR, what = "std")$lambda, inspect(object = corruptingEstimatesWLSMV, what = "std")$lambda) 
colnames(corruptingParams) = c("corruptingMLR", "corruptingWLSMV")

ignoringSyntax = "
ignore =~ p02 + p03 + p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57
"

ignoringEstimatesMLR = cfa(model = ignoringSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
fitResultsMLR = rbind(fitResultsMLR, c("Ignoring", inspect(object = ignoringEstimatesMLR, what = "fit")))

ignoringEstimatesWLSMV = cfa(model = ignoringSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV", 
                             ordered = c("p02", "p03", "p04", "p21", "p22", "p30", "p31", "p37", "p40", "p44", "p45", "p46", "p51", "p52", "p57"),
                             parameterization = "theta")
fitResultsWLSMV = rbind(fitResultsWLSMV, c("Ignoring", inspect(object = ignoringEstimatesWLSMV, what = "fit")))

ignoringParams = cbind(inspect(object = ignoringEstimatesMLR, what = "std")$lambda, inspect(object = ignoringEstimatesWLSMV, what = "std")$lambda) 
colnames(ignoringParams) = c("ignoringMLR", "ignoringWLSMV")

MLR Model Fit Results

fitResultsMLR[,c("Model", "chisq.scaled", "chisq.scaling.factor", "df.scaled", "pvalue.scaled", "cfi.scaled", "tli.scaled","rmsea.scaled")]
##         Model     chisq.scaled chisq.scaling.factor df.scaled
## 1    Spurning 226.152905765186      1.4037561252742        54
## 2 Terrorizing 189.803721116701     1.58656762802196        27
## 3   Isolating  80.259847624197      1.4932507532388         9
## 4  Corrupting 55.0538883570252     1.90789623870983        14
## 5    Ignoring 486.908843220687     1.79764025612883        90
##          pvalue.scaled        cfi.scaled        tli.scaled       rmsea.scaled
## 1                    0 0.958371099752682 0.949120233031056 0.0488674487326684
## 2                    0 0.918215012424422  0.89095334989923 0.0672062477520051
## 3 1.43551837084033e-13 0.916479746946289 0.860799578243815  0.077012382131692
## 4 8.47536313464126e-07 0.933846546194285 0.900769819291427 0.0468675765911613
## 5                    0 0.931548188466559 0.920139553210985 0.0574755981962841

WLSMV Model Fit Results

fitResultsWLSMV[,c("Model", "chisq.scaled", "chisq.scaling.factor", "df.scaled", "pvalue.scaled", "cfi.scaled", "tli.scaled","rmsea.scaled")]
##         Model     chisq.scaled chisq.scaling.factor df.scaled
## 1    Spurning 295.045952463798    0.496749579834486        54
## 2 Terrorizing  263.19997326362    0.500469180688551        27
## 3   Isolating 129.654419809325    0.543624947898763         9
## 4  Corrupting 87.8190972192855    0.475150597808876        14
## 5    Ignoring 897.971800277154    0.391492589079186        90
##          pvalue.scaled        cfi.scaled        tli.scaled       rmsea.scaled
## 1                    0  0.98339841593589 0.979709175032755 0.0578462389201534
## 2                    0  0.96554644739071  0.95406192985428 0.0809804387040941
## 3                    0 0.962025643940732 0.936709406567887   0.10024724549331
## 4 9.78217506997225e-13 0.976165199351843 0.964247799027764 0.0628698511593426
## 5                    0   0.9759983142346   0.9719980332737  0.082034952726923

Parameter Results

spurningParams
##     spurningMLR spurningWLSMV
## p06   0.5992433     0.6592699
## p10   0.4564849     0.5278419
## p14   0.7688568     0.8366025
## p25   0.5259160     0.5961952
## p27   0.6067552     0.6766139
## p29   0.8159279     0.8649677
## p33   0.8350497     0.9067893
## p35   0.4652622     0.5375738
## p48   0.5160559     0.7272325
## p49   0.6552668     0.7439243
## p53   0.6793626     0.7605317
## p54   0.6098414     0.6799810
terrorizingParams
##     terrorizingMLR terrorizingWLSMV
## p07      0.5117382        0.6168137
## p11      0.6733019        0.7708374
## p13      0.4510228        0.7125691
## p17      0.6114623        0.7212506
## p24      0.5706406        0.7869150
## p26      0.5537510        0.6172249
## p36      0.6847511        0.8045284
## p55      0.6430094        0.7424127
## p56      0.7318947        0.8150255
isolatingParams
##     isolatingMLR isolatingWLSMV
## p01    0.5212017      0.6953674
## p18    0.5498697      0.6289841
## p19    0.5444853      0.6847115
## p23    0.5399954      0.6283148
## p39    0.5630337      0.7260244
## p43    0.7522344      0.8217907
corruptingParams
##     corruptingMLR corruptingWLSMV
## p09     0.5893723       0.7389980
## p12     0.5447413       0.7134776
## p16     0.3763251       0.5245557
## p20     0.5448756       0.8542732
## p28     0.6314027       0.8259521
## p47     0.5799805       0.7077427
## p50     0.6459726       0.8399461
ignoringParams
##     ignoringMLR ignoringWLSMV
## p02   0.6719748     0.8127687
## p03   0.6541416     0.7491697
## p04   0.6569606     0.7487570
## p21   0.7241192     0.8010096
## p22   0.4450319     0.5401476
## p30   0.7450196     0.8332850
## p31   0.8464995     0.9130228
## p37   0.7133710     0.8129383
## p40   0.8075920     0.8909627
## p44   0.7565607     0.8494004
## p45   0.6559023     0.7952916
## p46   0.8297153     0.9044044
## p51   0.7113396     0.8056177
## p52   0.7393311     0.8149049
## p57   0.8249563     0.9176912

CFA model with MLR including all 5 correlated factors (“biggest model” for comparison)

cfaNoHighSyntax = "
spurn =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54
terror =~ p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56
isolate =~ p01 + p18 + p19 + p23 + p39 + p43
corrupt =~ p09 + p12 + p16 + p20 + p28 + p47 + p50
ignore =~ p02 + p03 + p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57
"

cfaNoHighEstimates = cfa(model = cfaNoHighSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
summary(cfaNoHighEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 107 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       157
## 
##   Number of observations                          1335
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              6490.272    4427.597
##   Degrees of freedom                              1117        1117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.466
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                             35067.550   22808.622
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.537
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.841       0.847
##   Tucker-Lewis Index (TLI)                       0.833       0.839
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.855
##   Robust Tucker-Lewis Index (TLI)                            0.847
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -68957.403  -68957.403
##   Scaling correction factor                                  2.498
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -65712.267  -65712.267
##   Scaling correction factor                                  1.593
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                              138228.806  138228.806
##   Bayesian (BIC)                            139044.685  139044.685
##   Sample-size adjusted Bayesian (SABIC)     138545.966  138545.966
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060       0.047
##   90 Percent confidence interval - lower         0.059       0.046
##   90 Percent confidence interval - upper         0.061       0.048
##   P-value H_0: RMSEA <= 0.050                    0.000       1.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.057
##   90 Percent confidence interval - lower                     0.055
##   90 Percent confidence interval - upper                     0.059
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057       0.057
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn =~                                                              
##     p06               1.000                               0.702    0.583
##     p10               0.785    0.062   12.752    0.000    0.551    0.444
##     p14               1.058    0.061   17.220    0.000    0.742    0.764
##     p25               0.890    0.060   14.925    0.000    0.624    0.523
##     p27               1.006    0.058   17.387    0.000    0.706    0.593
##     p29               1.310    0.068   19.335    0.000    0.919    0.796
##     p33               1.133    0.063   18.076    0.000    0.795    0.824
##     p35               0.745    0.063   11.815    0.000    0.523    0.515
##     p48               0.535    0.058    9.163    0.000    0.376    0.562
##     p49               0.919    0.060   15.439    0.000    0.645    0.663
##     p53               1.035    0.062   16.660    0.000    0.726    0.682
##     p54               1.091    0.068   16.119    0.000    0.765    0.629
##   terror =~                                                             
##     p07               1.000                               0.481    0.532
##     p11               1.357    0.097   13.936    0.000    0.652    0.678
##     p13               0.640    0.066    9.741    0.000    0.308    0.462
##     p17               1.068    0.087   12.251    0.000    0.513    0.596
##     p24               0.625    0.058   10.718    0.000    0.301    0.587
##     p26               1.232    0.115   10.706    0.000    0.592    0.592
##     p36               1.237    0.099   12.446    0.000    0.594    0.674
##     p55               1.581    0.130   12.173    0.000    0.760    0.626
##     p56               1.801    0.136   13.262    0.000    0.866    0.706
##   isolate =~                                                            
##     p01               1.000                               0.360    0.493
##     p18               2.112    0.224    9.432    0.000    0.760    0.606
##     p19               1.194    0.116   10.330    0.000    0.430    0.601
##     p23               1.658    0.172    9.644    0.000    0.597    0.584
##     p39               0.914    0.086   10.634    0.000    0.329    0.496
##     p43               1.575    0.133   11.870    0.000    0.567    0.683
##   corrupt =~                                                            
##     p09               1.000                               0.360    0.601
##     p12               0.952    0.101    9.383    0.000    0.343    0.535
##     p16               1.009    0.115    8.792    0.000    0.363    0.366
##     p20               0.649    0.080    8.156    0.000    0.234    0.500
##     p28               1.185    0.098   12.129    0.000    0.426    0.627
##     p47               1.343    0.112   11.938    0.000    0.483    0.611
##     p50               1.050    0.075   14.078    0.000    0.378    0.653
##   ignore =~                                                             
##     p02               1.000                               0.461    0.681
##     p03               1.318    0.082   16.110    0.000    0.607    0.653
##     p04               1.139    0.072   15.769    0.000    0.525    0.650
##     p21               1.317    0.092   14.243    0.000    0.607    0.717
##     p22               1.047    0.081   12.958    0.000    0.482    0.474
##     p30               1.504    0.090   16.640    0.000    0.693    0.743
##     p31               1.438    0.082   17.506    0.000    0.663    0.842
##     p37               1.161    0.078   14.955    0.000    0.535    0.708
##     p40               1.430    0.081   17.581    0.000    0.659    0.807
##     p44               1.305    0.079   16.471    0.000    0.601    0.765
##     p45               0.915    0.053   17.157    0.000    0.421    0.670
##     p46               1.439    0.083   17.433    0.000    0.663    0.822
##     p51               1.484    0.099   14.960    0.000    0.684    0.699
##     p52               1.676    0.107   15.732    0.000    0.772    0.754
##     p57               1.300    0.072   18.085    0.000    0.599    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn ~~                                                              
##     terror            0.313    0.025   12.647    0.000    0.929    0.929
##     isolate           0.227    0.022   10.134    0.000    0.898    0.898
##     corrupt           0.174    0.017   10.454    0.000    0.689    0.689
##     ignore            0.268    0.025   10.556    0.000    0.830    0.830
##   terror ~~                                                             
##     isolate           0.151    0.020    7.413    0.000    0.876    0.876
##     corrupt           0.137    0.019    7.241    0.000    0.792    0.792
##     ignore            0.170    0.022    7.717    0.000    0.767    0.767
##   isolate ~~                                                            
##     corrupt           0.085    0.015    5.721    0.000    0.658    0.658
##     ignore            0.137    0.020    6.964    0.000    0.829    0.829
##   corrupt ~~                                                            
##     ignore            0.104    0.015    7.143    0.000    0.630    0.630
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               2.520    0.033   76.549    0.000    2.520    2.095
##    .p10               2.208    0.034   65.045    0.000    2.208    1.780
##    .p14               1.600    0.027   60.165    0.000    1.600    1.647
##    .p25               2.029    0.033   62.184    0.000    2.029    1.702
##    .p27               2.229    0.033   68.385    0.000    2.229    1.872
##    .p29               1.898    0.032   60.059    0.000    1.898    1.644
##    .p33               1.601    0.026   60.633    0.000    1.601    1.659
##    .p35               1.776    0.028   63.917    0.000    1.776    1.749
##    .p48               1.236    0.018   67.548    0.000    1.236    1.849
##    .p49               1.649    0.027   61.987    0.000    1.649    1.697
##    .p53               1.844    0.029   63.324    0.000    1.844    1.733
##    .p54               1.934    0.033   58.053    0.000    1.934    1.589
##    .p07               1.622    0.025   65.517    0.000    1.622    1.793
##    .p11               1.586    0.026   60.218    0.000    1.586    1.648
##    .p13               1.213    0.018   66.573    0.000    1.213    1.822
##    .p17               1.493    0.024   63.352    0.000    1.493    1.734
##    .p24               1.196    0.014   85.313    0.000    1.196    2.335
##    .p26               2.026    0.027   73.948    0.000    2.026    2.024
##    .p36               1.459    0.024   60.477    0.000    1.459    1.655
##    .p55               1.837    0.033   55.295    0.000    1.837    1.513
##    .p56               1.923    0.034   57.270    0.000    1.923    1.567
##    .p01               1.303    0.020   65.295    0.000    1.303    1.787
##    .p18               2.318    0.034   67.527    0.000    2.318    1.848
##    .p19               1.288    0.020   65.846    0.000    1.288    1.802
##    .p23               2.022    0.028   72.385    0.000    2.022    1.981
##    .p39               1.311    0.018   72.292    0.000    1.311    1.979
##    .p43               1.656    0.023   72.927    0.000    1.656    1.996
##    .p09               1.246    0.016   76.116    0.000    1.246    2.083
##    .p12               1.338    0.018   76.389    0.000    1.338    2.091
##    .p16               1.692    0.027   62.260    0.000    1.692    1.704
##    .p20               1.109    0.013   86.722    0.000    1.109    2.373
##    .p28               1.205    0.019   64.736    0.000    1.205    1.772
##    .p47               1.370    0.022   63.288    0.000    1.370    1.732
##    .p50               1.184    0.016   74.812    0.000    1.184    2.048
##    .p02               1.298    0.019   70.090    0.000    1.298    1.918
##    .p03               1.630    0.025   64.022    0.000    1.630    1.752
##    .p04               1.573    0.022   71.253    0.000    1.573    1.950
##    .p21               1.562    0.023   67.411    0.000    1.562    1.845
##    .p22               1.831    0.028   65.796    0.000    1.831    1.801
##    .p30               1.706    0.026   66.859    0.000    1.706    1.830
##    .p31               1.514    0.022   70.256    0.000    1.514    1.923
##    .p37               1.479    0.021   71.457    0.000    1.479    1.956
##    .p40               1.467    0.022   65.622    0.000    1.467    1.796
##    .p44               1.599    0.022   74.349    0.000    1.599    2.035
##    .p45               1.282    0.017   74.467    0.000    1.282    2.038
##    .p46               1.502    0.022   68.064    0.000    1.502    1.863
##    .p51               1.619    0.027   60.522    0.000    1.619    1.656
##    .p52               1.804    0.028   64.384    0.000    1.804    1.762
##    .p57               1.378    0.020   69.055    0.000    1.378    1.890
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               0.954    0.049   19.509    0.000    0.954    0.660
##    .p10               1.235    0.048   25.492    0.000    1.235    0.803
##    .p14               0.393    0.025   15.549    0.000    0.393    0.417
##    .p25               1.032    0.042   24.819    0.000    1.032    0.726
##    .p27               0.920    0.040   22.896    0.000    0.920    0.649
##    .p29               0.489    0.027   17.958    0.000    0.489    0.366
##    .p33               0.298    0.021   14.411    0.000    0.298    0.321
##    .p35               0.757    0.045   17.015    0.000    0.757    0.735
##    .p48               0.306    0.031    9.777    0.000    0.306    0.684
##    .p49               0.530    0.032   16.677    0.000    0.530    0.560
##    .p53               0.605    0.039   15.366    0.000    0.605    0.535
##    .p54               0.896    0.043   20.861    0.000    0.896    0.605
##    .p07               0.587    0.037   15.777    0.000    0.587    0.718
##    .p11               0.500    0.033   14.987    0.000    0.500    0.540
##    .p13               0.349    0.041    8.556    0.000    0.349    0.787
##    .p17               0.478    0.032   14.777    0.000    0.478    0.644
##    .p24               0.172    0.018    9.567    0.000    0.172    0.655
##    .p26               0.651    0.045   14.623    0.000    0.651    0.650
##    .p36               0.424    0.031   13.747    0.000    0.424    0.545
##    .p55               0.895    0.049   18.257    0.000    0.895    0.608
##    .p56               0.755    0.044   17.014    0.000    0.755    0.502
##    .p01               0.402    0.044    9.225    0.000    0.402    0.757
##    .p18               0.995    0.047   21.099    0.000    0.995    0.633
##    .p19               0.326    0.029   11.093    0.000    0.326    0.638
##    .p23               0.686    0.034   20.139    0.000    0.686    0.658
##    .p39               0.331    0.035    9.503    0.000    0.331    0.753
##    .p43               0.367    0.025   14.427    0.000    0.367    0.534
##    .p09               0.229    0.027    8.388    0.000    0.229    0.638
##    .p12               0.292    0.030    9.756    0.000    0.292    0.713
##    .p16               0.854    0.047   18.281    0.000    0.854    0.866
##    .p20               0.164    0.030    5.394    0.000    0.164    0.750
##    .p28               0.281    0.035    7.913    0.000    0.281    0.607
##    .p47               0.392    0.036   10.802    0.000    0.392    0.627
##    .p50               0.191    0.030    6.482    0.000    0.191    0.573
##    .p02               0.246    0.028    8.696    0.000    0.246    0.537
##    .p03               0.496    0.036   13.642    0.000    0.496    0.574
##    .p04               0.376    0.032   11.881    0.000    0.376    0.577
##    .p21               0.349    0.025   14.162    0.000    0.349    0.487
##    .p22               0.801    0.039   20.565    0.000    0.801    0.775
##    .p30               0.389    0.036   10.719    0.000    0.389    0.448
##    .p31               0.181    0.019    9.439    0.000    0.181    0.292
##    .p37               0.285    0.027   10.566    0.000    0.285    0.499
##    .p40               0.233    0.030    7.740    0.000    0.233    0.349
##    .p44               0.256    0.021   12.273    0.000    0.256    0.414
##    .p45               0.218    0.020   10.980    0.000    0.218    0.551
##    .p46               0.210    0.026    8.218    0.000    0.210    0.324
##    .p51               0.488    0.036   13.489    0.000    0.488    0.511
##    .p52               0.452    0.028   16.234    0.000    0.452    0.431
##    .p57               0.173    0.021    8.320    0.000    0.173    0.325
##     spurn             0.492    0.049   10.111    0.000    1.000    1.000
##     terror            0.231    0.031    7.358    0.000    1.000    1.000
##     isolate           0.129    0.024    5.445    0.000    1.000    1.000
##     corrupt           0.129    0.021    6.057    0.000    1.000    1.000
##     ignore            0.212    0.029    7.243    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.340
##     p10               0.197
##     p14               0.583
##     p25               0.274
##     p27               0.351
##     p29               0.634
##     p33               0.679
##     p35               0.265
##     p48               0.316
##     p49               0.440
##     p53               0.465
##     p54               0.395
##     p07               0.282
##     p11               0.460
##     p13               0.213
##     p17               0.356
##     p24               0.345
##     p26               0.350
##     p36               0.455
##     p55               0.392
##     p56               0.498
##     p01               0.243
##     p18               0.367
##     p19               0.362
##     p23               0.342
##     p39               0.247
##     p43               0.466
##     p09               0.362
##     p12               0.287
##     p16               0.134
##     p20               0.250
##     p28               0.393
##     p47               0.373
##     p50               0.427
##     p02               0.463
##     p03               0.426
##     p04               0.423
##     p21               0.513
##     p22               0.225
##     p30               0.552
##     p31               0.708
##     p37               0.501
##     p40               0.651
##     p44               0.586
##     p45               0.449
##     p46               0.676
##     p51               0.489
##     p52               0.569
##     p57               0.675

NOTE: With respect to fit of the structural model, letting the separate factors be correlated is as good as it gets. This saturated structural model will be our “larger model” baseline with which to compare the fit of a single higher-order factor model (as the “smaller model”).

Syntax for CFA model with MLR and a higher-order factor instead of correlations among 5 factors (“smaller/bigger model”” for comparison)

cfaHigherSyntax = "
spurn =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54
terror =~ p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56
isolate =~ p01 + p18 + p19 + p23 + p39 + p43
corrupt =~ p09 + p12 + p16 + p20 + p28 + p47 + p50
ignore =~ p02 + p03 + p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57

abuse =~ spurn + terror + isolate + corrupt + ignore
"

cfaHigherEstimates = cfa(model = cfaHigherSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
summary(cfaHigherEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 75 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       152
## 
##   Number of observations                          1335
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              6597.050    4489.494
##   Degrees of freedom                              1122        1122
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.469
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                             35067.550   22808.622
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.537
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.838       0.844
##   Tucker-Lewis Index (TLI)                       0.831       0.837
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.852
##   Robust Tucker-Lewis Index (TLI)                            0.845
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -69010.792  -69010.792
##   Scaling correction factor                                  2.505
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -65712.267  -65712.267
##   Scaling correction factor                                  1.593
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                              138325.584  138325.584
##   Bayesian (BIC)                            139115.480  139115.480
##   Sample-size adjusted Bayesian (SABIC)     138632.643  138632.643
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060       0.047
##   90 Percent confidence interval - lower         0.059       0.046
##   90 Percent confidence interval - upper         0.062       0.049
##   P-value H_0: RMSEA <= 0.050                    0.000       1.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.057
##   90 Percent confidence interval - lower                     0.056
##   90 Percent confidence interval - upper                     0.059
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.058       0.058
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn =~                                                              
##     p06               1.000                               0.697    0.579
##     p10               0.792    0.062   12.710    0.000    0.552    0.445
##     p14               1.065    0.063   17.020    0.000    0.742    0.763
##     p25               0.896    0.061   14.750    0.000    0.624    0.524
##     p27               1.015    0.059   17.275    0.000    0.707    0.594
##     p29               1.319    0.069   19.076    0.000    0.919    0.796
##     p33               1.141    0.064   17.881    0.000    0.795    0.824
##     p35               0.747    0.063   11.849    0.000    0.520    0.512
##     p48               0.545    0.060    9.101    0.000    0.380    0.568
##     p49               0.927    0.061   15.296    0.000    0.646    0.664
##     p53               1.041    0.063   16.504    0.000    0.725    0.681
##     p54               1.098    0.069   15.909    0.000    0.765    0.628
##   terror =~                                                             
##     p07               1.000                               0.483    0.534
##     p11               1.341    0.097   13.871    0.000    0.648    0.673
##     p13               0.622    0.065    9.628    0.000    0.301    0.451
##     p17               1.070    0.088   12.209    0.000    0.517    0.600
##     p24               0.610    0.058   10.589    0.000    0.295    0.576
##     p26               1.247    0.111   11.190    0.000    0.603    0.602
##     p36               1.228    0.098   12.497    0.000    0.594    0.673
##     p55               1.589    0.130   12.226    0.000    0.768    0.633
##     p56               1.793    0.134   13.405    0.000    0.866    0.706
##   isolate =~                                                            
##     p01               1.000                               0.358    0.491
##     p18               2.139    0.219    9.778    0.000    0.766    0.611
##     p19               1.209    0.117   10.344    0.000    0.433    0.606
##     p23               1.685    0.168   10.003    0.000    0.603    0.591
##     p39               0.903    0.088   10.281    0.000    0.323    0.488
##     p43               1.557    0.134   11.633    0.000    0.558    0.672
##   corrupt =~                                                            
##     p09               1.000                               0.360    0.602
##     p12               0.961    0.103    9.367    0.000    0.346    0.541
##     p16               1.014    0.116    8.772    0.000    0.365    0.368
##     p20               0.645    0.080    8.086    0.000    0.232    0.497
##     p28               1.177    0.097   12.150    0.000    0.424    0.624
##     p47               1.347    0.112   12.030    0.000    0.485    0.614
##     p50               1.041    0.074   14.038    0.000    0.375    0.649
##   ignore =~                                                             
##     p02               1.000                               0.461    0.681
##     p03               1.318    0.082   16.103    0.000    0.607    0.653
##     p04               1.139    0.072   15.742    0.000    0.525    0.651
##     p21               1.317    0.093   14.221    0.000    0.607    0.717
##     p22               1.046    0.081   12.923    0.000    0.482    0.474
##     p30               1.504    0.090   16.643    0.000    0.693    0.743
##     p31               1.437    0.082   17.503    0.000    0.662    0.841
##     p37               1.161    0.078   14.958    0.000    0.535    0.708
##     p40               1.431    0.081   17.590    0.000    0.659    0.807
##     p44               1.302    0.079   16.483    0.000    0.600    0.764
##     p45               0.915    0.053   17.137    0.000    0.422    0.670
##     p46               1.439    0.083   17.406    0.000    0.663    0.822
##     p51               1.484    0.099   14.976    0.000    0.684    0.700
##     p52               1.673    0.106   15.728    0.000    0.771    0.753
##     p57               1.302    0.072   18.106    0.000    0.600    0.823
##   abuse =~                                                              
##     spurn             1.000                               0.971    0.971
##     terror            0.680    0.064   10.571    0.000    0.952    0.952
##     isolate           0.494    0.056    8.762    0.000    0.934    0.934
##     corrupt           0.397    0.049    8.188    0.000    0.745    0.745
##     ignore            0.577    0.054   10.585    0.000    0.846    0.846
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               2.520    0.033   76.549    0.000    2.520    2.095
##    .p10               2.208    0.034   65.045    0.000    2.208    1.780
##    .p14               1.600    0.027   60.165    0.000    1.600    1.647
##    .p25               2.029    0.033   62.184    0.000    2.029    1.702
##    .p27               2.229    0.033   68.385    0.000    2.229    1.872
##    .p29               1.898    0.032   60.059    0.000    1.898    1.644
##    .p33               1.601    0.026   60.633    0.000    1.601    1.659
##    .p35               1.776    0.028   63.917    0.000    1.776    1.749
##    .p48               1.236    0.018   67.548    0.000    1.236    1.849
##    .p49               1.649    0.027   61.987    0.000    1.649    1.697
##    .p53               1.844    0.029   63.324    0.000    1.844    1.733
##    .p54               1.934    0.033   58.053    0.000    1.934    1.589
##    .p07               1.622    0.025   65.517    0.000    1.622    1.793
##    .p11               1.586    0.026   60.218    0.000    1.586    1.648
##    .p13               1.213    0.018   66.573    0.000    1.213    1.822
##    .p17               1.493    0.024   63.352    0.000    1.493    1.734
##    .p24               1.196    0.014   85.313    0.000    1.196    2.335
##    .p26               2.026    0.027   73.948    0.000    2.026    2.024
##    .p36               1.459    0.024   60.477    0.000    1.459    1.655
##    .p55               1.837    0.033   55.295    0.000    1.837    1.513
##    .p56               1.923    0.034   57.270    0.000    1.923    1.567
##    .p01               1.303    0.020   65.295    0.000    1.303    1.787
##    .p18               2.318    0.034   67.527    0.000    2.318    1.848
##    .p19               1.288    0.020   65.846    0.000    1.288    1.802
##    .p23               2.022    0.028   72.385    0.000    2.022    1.981
##    .p39               1.311    0.018   72.292    0.000    1.311    1.979
##    .p43               1.656    0.023   72.927    0.000    1.656    1.996
##    .p09               1.246    0.016   76.116    0.000    1.246    2.083
##    .p12               1.338    0.018   76.389    0.000    1.338    2.091
##    .p16               1.692    0.027   62.260    0.000    1.692    1.704
##    .p20               1.109    0.013   86.722    0.000    1.109    2.373
##    .p28               1.205    0.019   64.736    0.000    1.205    1.772
##    .p47               1.370    0.022   63.288    0.000    1.370    1.732
##    .p50               1.184    0.016   74.812    0.000    1.184    2.048
##    .p02               1.298    0.019   70.090    0.000    1.298    1.918
##    .p03               1.630    0.025   64.022    0.000    1.630    1.752
##    .p04               1.573    0.022   71.253    0.000    1.573    1.950
##    .p21               1.562    0.023   67.411    0.000    1.562    1.845
##    .p22               1.831    0.028   65.796    0.000    1.831    1.801
##    .p30               1.706    0.026   66.859    0.000    1.706    1.830
##    .p31               1.514    0.022   70.256    0.000    1.514    1.923
##    .p37               1.479    0.021   71.457    0.000    1.479    1.956
##    .p40               1.467    0.022   65.622    0.000    1.467    1.796
##    .p44               1.599    0.022   74.349    0.000    1.599    2.035
##    .p45               1.282    0.017   74.467    0.000    1.282    2.038
##    .p46               1.502    0.022   68.064    0.000    1.502    1.863
##    .p51               1.619    0.027   60.522    0.000    1.619    1.656
##    .p52               1.804    0.028   64.384    0.000    1.804    1.762
##    .p57               1.378    0.020   69.055    0.000    1.378    1.890
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               0.961    0.049   19.570    0.000    0.961    0.665
##    .p10               1.234    0.048   25.501    0.000    1.234    0.802
##    .p14               0.394    0.025   15.580    0.000    0.394    0.417
##    .p25               1.032    0.042   24.741    0.000    1.032    0.726
##    .p27               0.919    0.040   22.915    0.000    0.919    0.648
##    .p29               0.489    0.027   17.888    0.000    0.489    0.367
##    .p33               0.298    0.021   14.357    0.000    0.298    0.321
##    .p35               0.760    0.045   17.037    0.000    0.760    0.738
##    .p48               0.303    0.031    9.754    0.000    0.303    0.677
##    .p49               0.528    0.032   16.668    0.000    0.528    0.559
##    .p53               0.607    0.039   15.389    0.000    0.607    0.536
##    .p54               0.897    0.043   21.030    0.000    0.897    0.605
##    .p07               0.584    0.037   15.883    0.000    0.584    0.715
##    .p11               0.506    0.034   15.099    0.000    0.506    0.547
##    .p13               0.353    0.041    8.653    0.000    0.353    0.796
##    .p17               0.474    0.032   14.885    0.000    0.474    0.640
##    .p24               0.175    0.018    9.605    0.000    0.175    0.669
##    .p26               0.639    0.043   14.816    0.000    0.639    0.638
##    .p36               0.425    0.031   13.811    0.000    0.425    0.547
##    .p55               0.883    0.049   18.120    0.000    0.883    0.600
##    .p56               0.754    0.044   17.223    0.000    0.754    0.501
##    .p01               0.404    0.043    9.317    0.000    0.404    0.759
##    .p18               0.986    0.045   21.986    0.000    0.986    0.627
##    .p19               0.323    0.029   11.130    0.000    0.323    0.633
##    .p23               0.678    0.033   20.665    0.000    0.678    0.651
##    .p39               0.334    0.035    9.588    0.000    0.334    0.762
##    .p43               0.378    0.026   14.324    0.000    0.378    0.548
##    .p09               0.228    0.027    8.392    0.000    0.228    0.637
##    .p12               0.289    0.030    9.810    0.000    0.289    0.707
##    .p16               0.853    0.047   18.246    0.000    0.853    0.865
##    .p20               0.164    0.030    5.404    0.000    0.164    0.753
##    .p28               0.283    0.036    7.880    0.000    0.283    0.611
##    .p47               0.390    0.036   10.858    0.000    0.390    0.623
##    .p50               0.193    0.030    6.448    0.000    0.193    0.579
##    .p02               0.246    0.028    8.724    0.000    0.246    0.536
##    .p03               0.497    0.036   13.665    0.000    0.497    0.574
##    .p04               0.375    0.032   11.877    0.000    0.375    0.576
##    .p21               0.348    0.025   14.074    0.000    0.348    0.486
##    .p22               0.801    0.039   20.556    0.000    0.801    0.775
##    .p30               0.389    0.036   10.728    0.000    0.389    0.448
##    .p31               0.181    0.019    9.457    0.000    0.181    0.292
##    .p37               0.285    0.027   10.566    0.000    0.285    0.499
##    .p40               0.232    0.030    7.729    0.000    0.232    0.348
##    .p44               0.258    0.021   12.304    0.000    0.258    0.417
##    .p45               0.218    0.020   11.032    0.000    0.218    0.551
##    .p46               0.210    0.026    8.198    0.000    0.210    0.324
##    .p51               0.487    0.036   13.473    0.000    0.487    0.510
##    .p52               0.454    0.028   16.305    0.000    0.454    0.433
##    .p57               0.172    0.021    8.308    0.000    0.172    0.323
##    .spurn             0.028    0.009    2.984    0.003    0.058    0.058
##    .terror            0.022    0.005    4.189    0.000    0.093    0.093
##    .isolate           0.016    0.005    3.447    0.001    0.129    0.129
##    .corrupt           0.058    0.010    5.777    0.000    0.445    0.445
##    .ignore            0.060    0.008    7.512    0.000    0.284    0.284
##     abuse             0.457    0.047    9.730    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.335
##     p10               0.198
##     p14               0.583
##     p25               0.274
##     p27               0.352
##     p29               0.633
##     p33               0.679
##     p35               0.262
##     p48               0.323
##     p49               0.441
##     p53               0.464
##     p54               0.395
##     p07               0.285
##     p11               0.453
##     p13               0.204
##     p17               0.360
##     p24               0.331
##     p26               0.362
##     p36               0.453
##     p55               0.400
##     p56               0.499
##     p01               0.241
##     p18               0.373
##     p19               0.367
##     p23               0.349
##     p39               0.238
##     p43               0.452
##     p09               0.363
##     p12               0.293
##     p16               0.135
##     p20               0.247
##     p28               0.389
##     p47               0.377
##     p50               0.421
##     p02               0.464
##     p03               0.426
##     p04               0.424
##     p21               0.514
##     p22               0.225
##     p30               0.552
##     p31               0.708
##     p37               0.501
##     p40               0.652
##     p44               0.583
##     p45               0.449
##     p46               0.676
##     p51               0.490
##     p52               0.567
##     p57               0.677
##     spurn             0.942
##     terror            0.907
##     isolate           0.871
##     corrupt           0.555
##     ignore            0.716

NOTE: With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

To test the fit against the saturated (all possible factor correlations model), we can do a −2ΔLL scaled difference test.

anova(cfaNoHighEstimates, cfaHigherEstimates)
## 
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
## 
## lavaan->lavTestLRT():  
##    lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
##    robust test that should be reported per model. A robust difference test is 
##    a function of two standard (not robust) statistics.
##                      Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## cfaNoHighEstimates 1117 138229 139045 6490.3                                  
## cfaHigherEstimates 1122 138326 139115 6597.1     47.083       5  5.465e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This higher-order factor model uses 5 fewer parameters (5 higher-order loadings to replace the 10 covariances among the factors).

According to the −2ΔLL scaled difference relative to the previous model,

−2ΔLL (5) = 47.083, p < .0001

trying to reproduce the 5 factor covariances with a single higher-order factor results in a significant decrease in fit. Based on the factor correlations we examined earlier and the standardized higher-order loadings, I’d guess the issue lies with the “corrupting”” factor not being as related to the others.

Comparison with One-Factor CFA model

For the sake of illustration, we can try one more alternative – what if the items were measuring a single factor (i.e., a single score)? Syntax for CFA model with MLR including a single factor instead of a higher-order factor (“smallest model” for comparison):

cfaSingleSyntax = "
abuse =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54 +
         p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56 + p01 + p18 + p19 + 
         p23 + p39 + p43 + p09 + p12 + p16 + p20 + p28 + p47 + p50 + p02 + p03 + 
         p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57
"
cfaSingleEstimates = cfa(model = cfaSingleSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "MLR")
summary(cfaSingleEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       147
## 
##   Number of observations                          1335
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              9209.963    6186.391
##   Degrees of freedom                              1127        1127
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.489
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                             35067.550   22808.622
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.537
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.762       0.766
##   Tucker-Lewis Index (TLI)                       0.751       0.756
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.774
##   Robust Tucker-Lewis Index (TLI)                            0.764
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -70317.248  -70317.248
##   Scaling correction factor                                  2.392
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -65712.267  -65712.267
##   Scaling correction factor                                  1.593
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                              140928.496  140928.496
##   Bayesian (BIC)                            141692.409  141692.409
##   Sample-size adjusted Bayesian (SABIC)     141225.455  141225.455
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.073       0.058
##   90 Percent confidence interval - lower         0.072       0.057
##   90 Percent confidence interval - upper         0.075       0.059
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.071
##   90 Percent confidence interval - lower                     0.069
##   90 Percent confidence interval - upper                     0.073
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062       0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   abuse =~                                                              
##     p06               1.000                               0.640    0.532
##     p10               0.784    0.066   11.916    0.000    0.502    0.405
##     p14               1.084    0.068   15.992    0.000    0.694    0.714
##     p25               0.898    0.064   14.001    0.000    0.575    0.482
##     p27               1.026    0.062   16.490    0.000    0.657    0.551
##     p29               1.333    0.075   17.690    0.000    0.854    0.739
##     p33               1.183    0.071   16.750    0.000    0.757    0.785
##     p35               0.939    0.077   12.203    0.000    0.601    0.592
##     p48               0.598    0.066    8.990    0.000    0.383    0.573
##     p49               0.949    0.064   14.722    0.000    0.608    0.625
##     p53               1.089    0.068   16.023    0.000    0.697    0.655
##     p54               1.099    0.074   14.764    0.000    0.704    0.578
##     p07               0.748    0.067   11.082    0.000    0.479    0.529
##     p11               0.934    0.075   12.466    0.000    0.598    0.622
##     p13               0.431    0.061    7.022    0.000    0.276    0.414
##     p17               0.719    0.067   10.725    0.000    0.460    0.535
##     p24               0.427    0.053    8.106    0.000    0.273    0.534
##     p26               0.915    0.060   15.249    0.000    0.586    0.585
##     p36               0.828    0.067   12.339    0.000    0.530    0.602
##     p55               1.067    0.069   15.406    0.000    0.683    0.563
##     p56               1.183    0.075   15.714    0.000    0.758    0.618
##     p01               0.526    0.060    8.737    0.000    0.337    0.462
##     p18               1.066    0.064   16.776    0.000    0.683    0.544
##     p19               0.639    0.066    9.710    0.000    0.409    0.573
##     p23               0.844    0.061   13.757    0.000    0.540    0.529
##     p39               0.473    0.055    8.581    0.000    0.303    0.457
##     p43               0.812    0.061   13.257    0.000    0.520    0.627
##     p09               0.430    0.051    8.357    0.000    0.275    0.460
##     p12               0.421    0.052    8.132    0.000    0.270    0.422
##     p16               0.389    0.057    6.819    0.000    0.249    0.251
##     p20               0.216    0.041    5.257    0.000    0.138    0.295
##     p28               0.473    0.068    6.991    0.000    0.303    0.445
##     p47               0.624    0.070    8.948    0.000    0.399    0.505
##     p50               0.438    0.062    7.082    0.000    0.280    0.485
##     p02               0.721    0.069   10.525    0.000    0.462    0.682
##     p03               0.899    0.069   13.001    0.000    0.576    0.619
##     p04               0.754    0.062   12.191    0.000    0.483    0.598
##     p21               0.874    0.074   11.734    0.000    0.559    0.661
##     p22               0.882    0.057   15.441    0.000    0.565    0.556
##     p30               1.017    0.070   14.547    0.000    0.651    0.698
##     p31               0.960    0.069   13.984    0.000    0.615    0.781
##     p37               0.775    0.066   11.728    0.000    0.496    0.657
##     p40               0.975    0.071   13.805    0.000    0.624    0.765
##     p44               0.916    0.064   14.284    0.000    0.587    0.746
##     p45               0.679    0.063   10.774    0.000    0.435    0.691
##     p46               0.953    0.072   13.227    0.000    0.610    0.757
##     p51               0.955    0.073   13.161    0.000    0.612    0.626
##     p52               1.212    0.068   17.942    0.000    0.776    0.758
##     p57               0.878    0.068   12.944    0.000    0.562    0.771
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               2.520    0.033   76.549    0.000    2.520    2.095
##    .p10               2.208    0.034   65.045    0.000    2.208    1.780
##    .p14               1.600    0.027   60.165    0.000    1.600    1.647
##    .p25               2.029    0.033   62.184    0.000    2.029    1.702
##    .p27               2.229    0.033   68.385    0.000    2.229    1.872
##    .p29               1.898    0.032   60.059    0.000    1.898    1.644
##    .p33               1.601    0.026   60.633    0.000    1.601    1.659
##    .p35               1.776    0.028   63.917    0.000    1.776    1.749
##    .p48               1.236    0.018   67.548    0.000    1.236    1.849
##    .p49               1.649    0.027   61.987    0.000    1.649    1.697
##    .p53               1.844    0.029   63.324    0.000    1.844    1.733
##    .p54               1.934    0.033   58.053    0.000    1.934    1.589
##    .p07               1.622    0.025   65.517    0.000    1.622    1.793
##    .p11               1.586    0.026   60.218    0.000    1.586    1.648
##    .p13               1.213    0.018   66.573    0.000    1.213    1.822
##    .p17               1.493    0.024   63.352    0.000    1.493    1.734
##    .p24               1.196    0.014   85.313    0.000    1.196    2.335
##    .p26               2.026    0.027   73.948    0.000    2.026    2.024
##    .p36               1.459    0.024   60.477    0.000    1.459    1.655
##    .p55               1.837    0.033   55.295    0.000    1.837    1.513
##    .p56               1.923    0.034   57.270    0.000    1.923    1.567
##    .p01               1.303    0.020   65.295    0.000    1.303    1.787
##    .p18               2.318    0.034   67.527    0.000    2.318    1.848
##    .p19               1.288    0.020   65.846    0.000    1.288    1.802
##    .p23               2.022    0.028   72.385    0.000    2.022    1.981
##    .p39               1.311    0.018   72.292    0.000    1.311    1.979
##    .p43               1.656    0.023   72.927    0.000    1.656    1.996
##    .p09               1.246    0.016   76.116    0.000    1.246    2.083
##    .p12               1.338    0.018   76.389    0.000    1.338    2.091
##    .p16               1.692    0.027   62.260    0.000    1.692    1.704
##    .p20               1.109    0.013   86.722    0.000    1.109    2.373
##    .p28               1.205    0.019   64.736    0.000    1.205    1.772
##    .p47               1.370    0.022   63.288    0.000    1.370    1.732
##    .p50               1.184    0.016   74.812    0.000    1.184    2.048
##    .p02               1.298    0.019   70.090    0.000    1.298    1.918
##    .p03               1.630    0.025   64.022    0.000    1.630    1.752
##    .p04               1.573    0.022   71.253    0.000    1.573    1.950
##    .p21               1.562    0.023   67.411    0.000    1.562    1.845
##    .p22               1.831    0.028   65.796    0.000    1.831    1.801
##    .p30               1.706    0.026   66.859    0.000    1.706    1.830
##    .p31               1.514    0.022   70.256    0.000    1.514    1.923
##    .p37               1.479    0.021   71.457    0.000    1.479    1.956
##    .p40               1.467    0.022   65.622    0.000    1.467    1.796
##    .p44               1.599    0.022   74.349    0.000    1.599    2.035
##    .p45               1.282    0.017   74.467    0.000    1.282    2.038
##    .p46               1.502    0.022   68.064    0.000    1.502    1.863
##    .p51               1.619    0.027   60.522    0.000    1.619    1.656
##    .p52               1.804    0.028   64.384    0.000    1.804    1.762
##    .p57               1.378    0.020   69.055    0.000    1.378    1.890
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               1.037    0.048   21.813    0.000    1.037    0.717
##    .p10               1.287    0.048   26.819    0.000    1.287    0.836
##    .p14               0.462    0.029   16.035    0.000    0.462    0.490
##    .p25               1.091    0.042   25.785    0.000    1.091    0.767
##    .p27               0.987    0.041   24.269    0.000    0.987    0.696
##    .p29               0.605    0.033   18.229    0.000    0.605    0.454
##    .p33               0.357    0.023   15.700    0.000    0.357    0.384
##    .p35               0.669    0.041   16.194    0.000    0.669    0.649
##    .p48               0.300    0.032    9.440    0.000    0.300    0.672
##    .p49               0.576    0.033   17.198    0.000    0.576    0.609
##    .p53               0.646    0.040   16.033    0.000    0.646    0.571
##    .p54               0.986    0.045   21.967    0.000    0.986    0.666
##    .p07               0.589    0.036   16.149    0.000    0.589    0.720
##    .p11               0.568    0.036   15.739    0.000    0.568    0.614
##    .p13               0.368    0.042    8.712    0.000    0.368    0.829
##    .p17               0.529    0.034   15.407    0.000    0.529    0.714
##    .p24               0.187    0.020    9.378    0.000    0.187    0.715
##    .p26               0.659    0.041   16.117    0.000    0.659    0.658
##    .p36               0.496    0.035   14.348    0.000    0.496    0.638
##    .p55               1.007    0.051   19.864    0.000    1.007    0.683
##    .p56               0.931    0.046   20.420    0.000    0.931    0.619
##    .p01               0.419    0.044    9.581    0.000    0.419    0.787
##    .p18               1.107    0.043   25.620    0.000    1.107    0.704
##    .p19               0.343    0.030   11.613    0.000    0.343    0.672
##    .p23               0.750    0.033   22.901    0.000    0.750    0.720
##    .p39               0.347    0.035    9.948    0.000    0.347    0.791
##    .p43               0.418    0.023   17.799    0.000    0.418    0.607
##    .p09               0.282    0.028    9.966    0.000    0.282    0.788
##    .p12               0.337    0.031   11.006    0.000    0.337    0.822
##    .p16               0.924    0.046   19.893    0.000    0.924    0.937
##    .p20               0.199    0.033    6.011    0.000    0.199    0.913
##    .p28               0.371    0.039    9.444    0.000    0.371    0.802
##    .p47               0.466    0.037   12.715    0.000    0.466    0.745
##    .p50               0.255    0.033    7.825    0.000    0.255    0.765
##    .p02               0.245    0.027    9.217    0.000    0.245    0.534
##    .p03               0.534    0.038   14.053    0.000    0.534    0.617
##    .p04               0.418    0.033   12.790    0.000    0.418    0.642
##    .p21               0.404    0.028   14.351    0.000    0.404    0.563
##    .p22               0.714    0.035   20.130    0.000    0.714    0.691
##    .p30               0.446    0.039   11.520    0.000    0.446    0.512
##    .p31               0.242    0.023   10.688    0.000    0.242    0.390
##    .p37               0.325    0.030   10.910    0.000    0.325    0.569
##    .p40               0.277    0.032    8.742    0.000    0.277    0.415
##    .p44               0.274    0.021   12.945    0.000    0.274    0.443
##    .p45               0.207    0.017   12.315    0.000    0.207    0.523
##    .p46               0.277    0.029    9.723    0.000    0.277    0.427
##    .p51               0.581    0.040   14.598    0.000    0.581    0.608
##    .p52               0.447    0.027   16.499    0.000    0.447    0.426
##    .p57               0.216    0.022    9.615    0.000    0.216    0.406
##     abuse             0.410    0.045    9.048    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.283
##     p10               0.164
##     p14               0.510
##     p25               0.233
##     p27               0.304
##     p29               0.546
##     p33               0.616
##     p35               0.351
##     p48               0.328
##     p49               0.391
##     p53               0.429
##     p54               0.334
##     p07               0.280
##     p11               0.386
##     p13               0.171
##     p17               0.286
##     p24               0.285
##     p26               0.342
##     p36               0.362
##     p55               0.317
##     p56               0.381
##     p01               0.213
##     p18               0.296
##     p19               0.328
##     p23               0.280
##     p39               0.209
##     p43               0.393
##     p09               0.212
##     p12               0.178
##     p16               0.063
##     p20               0.087
##     p28               0.198
##     p47               0.255
##     p50               0.235
##     p02               0.466
##     p03               0.383
##     p04               0.358
##     p21               0.437
##     p22               0.309
##     p30               0.488
##     p31               0.610
##     p37               0.431
##     p40               0.585
##     p44               0.557
##     p45               0.477
##     p46               0.573
##     p51               0.392
##     p52               0.574
##     p57               0.594

NOTE: With respect to fit of the structural model, we are now fitting a single factor INSTEAD OF 5 factors and a higher-order factor. This will tell us the extent to which a “total score” is appropriate.

anova(cfaSingleEstimates, cfaNoHighEstimates, cfaHigherEstimates)
## 
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
## 
## lavaan->lavTestLRT():  
##    lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
##    robust test that should be reported per model. A robust difference test is 
##    a function of two standard (not robust) statistics.
##                      Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## cfaNoHighEstimates 1117 138229 139045 6490.3                                  
## cfaHigherEstimates 1122 138326 139115 6597.1      47.08       5  5.465e-09 ***
## cfaSingleEstimates 1127 140928 141692 9210.0     448.91       5  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

According to the −2ΔLL scaled difference relative to the previous model, −2ΔLL (5) = 448.91, p < .0001

Therefore, a single factor fits significantly worse than 5 factors + a higher-order factor, and so one factor does not capture the covariances for these 49 items.

Syntax for IFA model with WLSMV including all 5 correlated factors (“biggest model”)

NOTE: With respect to fit of the structural model, letting the 5 separate factors be correlated is as good as it gets. This saturated structural model will be our “largest model” baseline with which to compare the fit of a single higher-order factor model (as the “smaller model”).

ifaNoHighSyntax = "
spurn =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54
terror =~ p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56
isolate =~ p01 + p18 + p19 + p23 + p39 + p43
corrupt =~ p09 + p12 + p16 + p20 + p28 + p47 + p50
ignore =~ p02 + p03 + p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57
"

ifaNoHighEstimates = cfa(model = ifaNoHighSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV",
                         ordered = c("p06", "p10", "p14", "p25", "p27", "p29", "p33", "p35", "p48", "p49", "p53", "p54", 
                                     "p07", "p11", "p13", "p17", "p24", "p26", "p36", "p55", "p56", "p01", "p18", "p19", 
                                     "p23", "p39", "p43", "p09", "p12", "p16", "p20", "p28", "p47", "p50", "p02", "p03", 
                                     "p04", "p21", "p22", "p30", "p31", "p37", "p40", "p44", "p45", "p46", "p51", "p52", "p57"))
summary(ifaNoHighEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 83 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       255
## 
##   Number of observations                          1335
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              5673.876    5931.528
##   Degrees of freedom                              1117        1117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.070
##   Shift parameter                                          628.337
##     simple second-order correction (WLSMV)                        
## 
## Model Test Baseline Model:
## 
##   Test statistic                            471778.214   67352.685
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.111
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990       0.927
##   Tucker-Lewis Index (TLI)                       0.990       0.923
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.813
##   Robust Tucker-Lewis Index (TLI)                            0.803
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.055       0.057
##   90 Percent confidence interval - lower         0.054       0.055
##   90 Percent confidence interval - upper         0.057       0.058
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.087
##   90 Percent confidence interval - lower                     0.084
##   90 Percent confidence interval - upper                     0.089
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060       0.060
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn =~                                                              
##     p06               1.000                               0.625    0.625
##     p10               0.798    0.045   17.626    0.000    0.499    0.499
##     p14               1.311    0.047   28.062    0.000    0.819    0.819
##     p25               0.920    0.044   20.741    0.000    0.575    0.575
##     p27               1.032    0.042   24.495    0.000    0.645    0.645
##     p29               1.343    0.047   28.546    0.000    0.839    0.839
##     p33               1.432    0.049   29.242    0.000    0.895    0.895
##     p35               1.125    0.048   23.484    0.000    0.703    0.703
##     p48               1.312    0.059   22.371    0.000    0.820    0.820
##     p49               1.171    0.045   26.260    0.000    0.731    0.731
##     p53               1.212    0.046   26.418    0.000    0.757    0.757
##     p54               1.109    0.044   25.042    0.000    0.693    0.693
##   terror =~                                                             
##     p07               1.000                               0.672    0.672
##     p11               1.159    0.041   28.548    0.000    0.778    0.778
##     p13               1.062    0.048   22.139    0.000    0.713    0.713
##     p17               1.023    0.041   25.077    0.000    0.687    0.687
##     p24               1.185    0.047   25.422    0.000    0.796    0.796
##     p26               1.032    0.043   24.061    0.000    0.693    0.693
##     p36               1.184    0.043   27.291    0.000    0.795    0.795
##     p55               1.075    0.043   25.124    0.000    0.722    0.722
##     p56               1.134    0.040   28.197    0.000    0.762    0.762
##   isolate =~                                                            
##     p01               1.000                               0.687    0.687
##     p18               0.965    0.044   21.813    0.000    0.663    0.663
##     p19               1.173    0.048   24.291    0.000    0.806    0.806
##     p23               0.932    0.043   21.916    0.000    0.641    0.641
##     p39               0.993    0.044   22.689    0.000    0.682    0.682
##     p43               1.095    0.041   26.553    0.000    0.753    0.753
##   corrupt =~                                                            
##     p09               1.000                               0.759    0.759
##     p12               0.905    0.044   20.417    0.000    0.686    0.686
##     p16               0.560    0.043   13.005    0.000    0.425    0.425
##     p20               1.042    0.048   21.566    0.000    0.790    0.790
##     p28               1.084    0.047   22.865    0.000    0.823    0.823
##     p47               1.045    0.041   25.305    0.000    0.793    0.793
##     p50               1.154    0.045   25.766    0.000    0.875    0.875
##   ignore =~                                                             
##     p02               1.000                               0.845    0.845
##     p03               0.874    0.023   38.592    0.000    0.738    0.738
##     p04               0.850    0.023   37.782    0.000    0.718    0.718
##     p21               0.924    0.022   41.436    0.000    0.781    0.781
##     p22               0.800    0.027   29.849    0.000    0.675    0.675
##     p30               0.974    0.021   46.107    0.000    0.822    0.822
##     p31               1.063    0.021   49.516    0.000    0.898    0.898
##     p37               0.955    0.022   43.428    0.000    0.807    0.807
##     p40               1.056    0.021   50.732    0.000    0.892    0.892
##     p44               1.022    0.021   48.565    0.000    0.863    0.863
##     p45               1.008    0.022   46.894    0.000    0.852    0.852
##     p46               1.052    0.021   50.180    0.000    0.888    0.888
##     p51               0.903    0.022   40.250    0.000    0.763    0.763
##     p52               1.000    0.022   46.030    0.000    0.844    0.844
##     p57               1.075    0.021   50.965    0.000    0.908    0.908
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn ~~                                                              
##     terror            0.397    0.018   21.996    0.000    0.947    0.947
##     isolate           0.397    0.020   19.649    0.000    0.925    0.925
##     corrupt           0.375    0.019   19.968    0.000    0.791    0.791
##     ignore            0.465    0.019   24.260    0.000    0.882    0.882
##   terror ~~                                                             
##     isolate           0.408    0.023   18.044    0.000    0.885    0.885
##     corrupt           0.441    0.025   17.537    0.000    0.866    0.866
##     ignore            0.463    0.023   20.557    0.000    0.817    0.817
##   isolate ~~                                                            
##     corrupt           0.404    0.027   15.124    0.000    0.776    0.776
##     ignore            0.501    0.024   20.569    0.000    0.863    0.863
##   corrupt ~~                                                            
##     ignore            0.467    0.024   19.257    0.000    0.728    0.728
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     p06|t1           -0.751    0.038  -19.725    0.000   -0.751   -0.751
##     p06|t2            0.154    0.034    4.456    0.000    0.154    0.154
##     p06|t3            0.700    0.038   18.635    0.000    0.700    0.700
##     p06|t4            1.513    0.053   28.430    0.000    1.513    1.513
##     p10|t1           -0.312    0.035   -8.929    0.000   -0.312   -0.312
##     p10|t2            0.427    0.035   12.021    0.000    0.427    0.427
##     p10|t3            0.869    0.039   22.005    0.000    0.869    0.869
##     p10|t4            1.568    0.055   28.478    0.000    1.568    1.568
##     p14|t1            0.360    0.035   10.233    0.000    0.360    0.360
##     p14|t2            1.047    0.042   24.855    0.000    1.047    1.047
##     p14|t3            1.446    0.051   28.266    0.000    1.446    1.446
##     p14|t4            2.081    0.081   25.660    0.000    2.081    2.081
##     p25|t1           -0.082    0.034   -2.379    0.017   -0.082   -0.082
##     p25|t2            0.547    0.036   15.089    0.000    0.547    0.547
##     p25|t3            0.916    0.040   22.841    0.000    0.916    0.916
##     p25|t4            1.965    0.073   26.747    0.000    1.965    1.965
##     p27|t1           -0.394    0.035  -11.155    0.000   -0.394   -0.394
##     p27|t2            0.398    0.035   11.264    0.000    0.398    0.398
##     p27|t3            0.888    0.040   22.351    0.000    0.888    0.888
##     p27|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p29|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p29|t2            0.715    0.038   18.948    0.000    0.715    0.715
##     p29|t3            1.090    0.043   25.426    0.000    1.090    1.090
##     p29|t4            1.800    0.065   27.879    0.000    1.800    1.800
##     p33|t1            0.346    0.035    9.853    0.000    0.346    0.346
##     p33|t2            1.063    0.042   25.077    0.000    1.063    1.063
##     p33|t3            1.440    0.051   28.249    0.000    1.440    1.440
##     p33|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p35|t1            0.022    0.034    0.629    0.529    0.022    0.022
##     p35|t2            0.960    0.041   23.561    0.000    0.960    0.960
##     p35|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p35|t4            1.915    0.071   27.140    0.000    1.915    1.915
##     p48|t1            1.047    0.042   24.855    0.000    1.047    1.047
##     p48|t2            1.636    0.058   28.433    0.000    1.636    1.636
##     p48|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p48|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p49|t1            0.265    0.035    7.622    0.000    0.265    0.265
##     p49|t2            0.975    0.041   23.798    0.000    0.975    0.975
##     p49|t3            1.451    0.051   28.284    0.000    1.451    1.451
##     p49|t4            2.151    0.086   24.900    0.000    2.151    2.151
##     p53|t1            0.003    0.034    0.082    0.935    0.003    0.003
##     p53|t2            0.782    0.038   20.341    0.000    0.782    0.782
##     p53|t3            1.275    0.047   27.323    0.000    1.275    1.275
##     p53|t4            1.927    0.071   27.050    0.000    1.927    1.927
##     p54|t1            0.076    0.034    2.215    0.027    0.076    0.076
##     p54|t2            0.637    0.037   17.217    0.000    0.637    0.637
##     p54|t3            0.999    0.041   24.171    0.000    0.999    0.999
##     p54|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p07|t1            0.207    0.035    5.985    0.000    0.207    0.207
##     p07|t2            1.128    0.044   25.892    0.000    1.128    1.128
##     p07|t3            1.549    0.054   28.470    0.000    1.549    1.549
##     p07|t4            2.212    0.091   24.192    0.000    2.212    2.212
##     p11|t1            0.382    0.035   10.830    0.000    0.382    0.382
##     p11|t2            1.060    0.042   25.033    0.000    1.060    1.060
##     p11|t3            1.456    0.051   28.300    0.000    1.456    1.456
##     p11|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p13|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p13|t2            1.658    0.058   28.395    0.000    1.658    1.658
##     p13|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p13|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p17|t1            0.451    0.036   12.670    0.000    0.451    0.451
##     p17|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p17|t3            1.615    0.057   28.459    0.000    1.615    1.615
##     p17|t4            2.234    0.093   23.922    0.000    2.234    2.234
##     p24|t1            1.009    0.041   24.310    0.000    1.009    1.009
##     p24|t2            1.904    0.070   27.226    0.000    1.904    1.904
##     p24|t3            2.433    0.114   21.310    0.000    2.433    2.433
##     p24|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p26|t1           -0.468    0.036  -13.101    0.000   -0.468   -0.468
##     p26|t2            0.813    0.039   20.952    0.000    0.813    0.813
##     p26|t3            1.242    0.046   27.049    0.000    1.242    1.242
##     p26|t4            1.870    0.068   27.460    0.000    1.870    1.870
##     p36|t1            0.587    0.037   16.050    0.000    0.587    0.587
##     p36|t2            1.242    0.046   27.049    0.000    1.242    1.242
##     p36|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p36|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p55|t1            0.253    0.035    7.295    0.000    0.253    0.253
##     p55|t2            0.700    0.038   18.635    0.000    0.700    0.700
##     p55|t3            1.002    0.041   24.218    0.000    1.002    1.002
##     p55|t4            1.790    0.064   27.927    0.000    1.790    1.790
##     p56|t1            0.114    0.034    3.309    0.001    0.114    0.114
##     p56|t2            0.651    0.037   17.533    0.000    0.651    0.651
##     p56|t3            0.945    0.041   23.323    0.000    0.945    0.945
##     p56|t4            1.772    0.063   28.015    0.000    1.772    1.772
##     p01|t1            0.836    0.039   21.406    0.000    0.836    0.836
##     p01|t2            1.575    0.055   28.478    0.000    1.575    1.575
##     p01|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p01|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p18|t1           -0.416    0.035  -11.751    0.000   -0.416   -0.416
##     p18|t2            0.294    0.035    8.439    0.000    0.294    0.294
##     p18|t3            0.826    0.039   21.205    0.000    0.826    0.826
##     p18|t4            1.495    0.053   28.399    0.000    1.495    1.495
##     p19|t1            0.899    0.040   22.548    0.000    0.899    0.899
##     p19|t2            1.525    0.054   28.447    0.000    1.525    1.525
##     p19|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p19|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p23|t1           -0.334    0.035   -9.527    0.000   -0.334   -0.334
##     p23|t2            0.616    0.037   16.740    0.000    0.616    0.616
##     p23|t3            1.254    0.046   27.154    0.000    1.254    1.254
##     p23|t4            2.097    0.082   25.486    0.000    2.097    2.097
##     p39|t1            0.717    0.038   19.000    0.000    0.717    0.717
##     p39|t2            1.696    0.060   28.301    0.000    1.696    1.696
##     p39|t3            2.049    0.079   25.978    0.000    2.049    2.049
##     p39|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p43|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p43|t2            1.202    0.045   26.684    0.000    1.202    1.202
##     p43|t3            1.673    0.059   28.362    0.000    1.673    1.673
##     p43|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p09|t1            0.908    0.040   22.695    0.000    0.908    0.908
##     p09|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p09|t3            2.151    0.086   24.900    0.000    2.151    2.151
##     p09|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p12|t1            0.589    0.037   16.103    0.000    0.589    0.589
##     p12|t2            1.809    0.065   27.829    0.000    1.809    1.809
##     p12|t3            2.133    0.085   25.107    0.000    2.133    2.133
##     p12|t4            2.398    0.110   21.788    0.000    2.398    2.398
##     p16|t1            0.196    0.035    5.658    0.000    0.196    0.196
##     p16|t2            0.963    0.041   23.609    0.000    0.963    0.963
##     p16|t3            1.360    0.049   27.889    0.000    1.360    1.360
##     p16|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p20|t1            1.478    0.052   28.361    0.000    1.478    1.478
##     p20|t2            2.034    0.078   26.124    0.000    2.034    2.034
##     p20|t3            2.191    0.090   24.444    0.000    2.191    2.191
##     p20|t4            2.674    0.150   17.852    0.000    2.674    2.674
##     p28|t1            1.210    0.045   26.759    0.000    1.210    1.210
##     p28|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p28|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p28|t4            2.282    0.098   23.321    0.000    2.282    2.282
##     p47|t1            0.724    0.038   19.156    0.000    0.724    0.724
##     p47|t2            1.370    0.049   27.941    0.000    1.370    1.370
##     p47|t3            1.754    0.062   28.094    0.000    1.754    1.754
##     p47|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p50|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p50|t2            1.849    0.067   27.596    0.000    1.849    1.849
##     p50|t3            2.081    0.081   25.660    0.000    2.081    2.081
##     p50|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p02|t1            0.789    0.039   20.494    0.000    0.789    0.789
##     p02|t2            1.650    0.058   28.409    0.000    1.650    1.650
##     p02|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p02|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p03|t1            0.209    0.035    6.040    0.000    0.209    0.209
##     p03|t2            1.111    0.043   25.682    0.000    1.111    1.111
##     p03|t3            1.594    0.056   28.474    0.000    1.594    1.594
##     p03|t4            1.978    0.074   26.636    0.000    1.978    1.978
##     p04|t1            0.213    0.035    6.149    0.000    0.213    0.213
##     p04|t2            1.168    0.044   26.337    0.000    1.168    1.168
##     p04|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p04|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p21|t1            0.251    0.035    7.240    0.000    0.251    0.251
##     p21|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p21|t3            1.688    0.060   28.323    0.000    1.688    1.688
##     p21|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p22|t1           -0.007    0.034   -0.191    0.848   -0.007   -0.007
##     p22|t2            0.756    0.038   19.828    0.000    0.756    0.756
##     p22|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p22|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p30|t1            0.046    0.034    1.340    0.180    0.046    0.046
##     p30|t2            1.080    0.043   25.296    0.000    1.080    1.080
##     p30|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p30|t4            2.019    0.077   26.263    0.000    2.019    2.019
##     p31|t1            0.312    0.035    8.929    0.000    0.312    0.312
##     p31|t2            1.292    0.047   27.452    0.000    1.292    1.292
##     p31|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p31|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p37|t1            0.350    0.035    9.962    0.000    0.350    0.350
##     p37|t2            1.414    0.050   28.150    0.000    1.414    1.414
##     p37|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p37|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p40|t1            0.466    0.036   13.048    0.000    0.466    0.466
##     p40|t2            1.310    0.047   27.577    0.000    1.310    1.310
##     p40|t3            1.763    0.063   28.056    0.000    1.763    1.763
##     p40|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p44|t1            0.095    0.034    2.762    0.006    0.095    0.095
##     p44|t2            1.305    0.047   27.546    0.000    1.305    1.305
##     p44|t3            1.870    0.068   27.460    0.000    1.870    1.870
##     p44|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p45|t1            0.807    0.039   20.851    0.000    0.807    0.807
##     p45|t2            1.615    0.057   28.459    0.000    1.615    1.615
##     p45|t3            2.171    0.088   24.679    0.000    2.171    2.171
##     p45|t4            2.612    0.139   18.749    0.000    2.612    2.612
##     p46|t1            0.356    0.035   10.124    0.000    0.356    0.356
##     p46|t2            1.319    0.048   27.637    0.000    1.319    1.319
##     p46|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p46|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p51|t1            0.330    0.035    9.418    0.000    0.330    0.330
##     p51|t2            1.009    0.041   24.310    0.000    1.009    1.009
##     p51|t3            1.467    0.052   28.332    0.000    1.467    1.467
##     p51|t4            2.049    0.079   25.978    0.000    2.049    2.049
##     p52|t1            0.016    0.034    0.465    0.642    0.016    0.016
##     p52|t2            0.852    0.039   21.707    0.000    0.852    0.852
##     p52|t3            1.323    0.048   27.667    0.000    1.323    1.323
##     p52|t4            2.034    0.078   26.124    0.000    2.034    2.034
##     p57|t1            0.600    0.037   16.369    0.000    0.600    0.600
##     p57|t2            1.467    0.052   28.332    0.000    1.467    1.467
##     p57|t3            2.019    0.077   26.263    0.000    2.019    2.019
##     p57|t4            2.282    0.098   23.321    0.000    2.282    2.282
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               0.610                               0.610    0.610
##    .p10               0.751                               0.751    0.751
##    .p14               0.329                               0.329    0.329
##    .p25               0.670                               0.670    0.670
##    .p27               0.584                               0.584    0.584
##    .p29               0.296                               0.296    0.296
##    .p33               0.200                               0.200    0.200
##    .p35               0.506                               0.506    0.506
##    .p48               0.328                               0.328    0.328
##    .p49               0.465                               0.465    0.465
##    .p53               0.427                               0.427    0.427
##    .p54               0.520                               0.520    0.520
##    .p07               0.549                               0.549    0.549
##    .p11               0.394                               0.394    0.394
##    .p13               0.492                               0.492    0.492
##    .p17               0.528                               0.528    0.528
##    .p24               0.367                               0.367    0.367
##    .p26               0.520                               0.520    0.520
##    .p36               0.367                               0.367    0.367
##    .p55               0.479                               0.479    0.479
##    .p56               0.420                               0.420    0.420
##    .p01               0.528                               0.528    0.528
##    .p18               0.561                               0.561    0.561
##    .p19               0.350                               0.350    0.350
##    .p23               0.590                               0.590    0.590
##    .p39               0.535                               0.535    0.535
##    .p43               0.434                               0.434    0.434
##    .p09               0.424                               0.424    0.424
##    .p12               0.529                               0.529    0.529
##    .p16               0.819                               0.819    0.819
##    .p20               0.375                               0.375    0.375
##    .p28               0.323                               0.323    0.323
##    .p47               0.371                               0.371    0.371
##    .p50               0.234                               0.234    0.234
##    .p02               0.287                               0.287    0.287
##    .p03               0.455                               0.455    0.455
##    .p04               0.484                               0.484    0.484
##    .p21               0.391                               0.391    0.391
##    .p22               0.544                               0.544    0.544
##    .p30               0.324                               0.324    0.324
##    .p31               0.194                               0.194    0.194
##    .p37               0.349                               0.349    0.349
##    .p40               0.205                               0.205    0.205
##    .p44               0.254                               0.254    0.254
##    .p45               0.275                               0.275    0.275
##    .p46               0.211                               0.211    0.211
##    .p51               0.418                               0.418    0.418
##    .p52               0.287                               0.287    0.287
##    .p57               0.176                               0.176    0.176
##     spurn             0.390    0.026   14.831    0.000    1.000    1.000
##     terror            0.451    0.028   15.966    0.000    1.000    1.000
##     isolate           0.472    0.034   14.043    0.000    1.000    1.000
##     corrupt           0.576    0.039   14.868    0.000    1.000    1.000
##     ignore            0.713    0.029   24.973    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.390
##     p10               0.249
##     p14               0.671
##     p25               0.330
##     p27               0.416
##     p29               0.704
##     p33               0.800
##     p35               0.494
##     p48               0.672
##     p49               0.535
##     p53               0.573
##     p54               0.480
##     p07               0.451
##     p11               0.606
##     p13               0.508
##     p17               0.472
##     p24               0.633
##     p26               0.480
##     p36               0.633
##     p55               0.521
##     p56               0.580
##     p01               0.472
##     p18               0.439
##     p19               0.650
##     p23               0.410
##     p39               0.465
##     p43               0.566
##     p09               0.576
##     p12               0.471
##     p16               0.181
##     p20               0.625
##     p28               0.677
##     p47               0.629
##     p50               0.766
##     p02               0.713
##     p03               0.545
##     p04               0.516
##     p21               0.609
##     p22               0.456
##     p30               0.676
##     p31               0.806
##     p37               0.651
##     p40               0.795
##     p44               0.746
##     p45               0.725
##     p46               0.789
##     p51               0.582
##     p52               0.713
##     p57               0.824

Note: #free parameters = 255 = 44 loadings + 49*4=196 thresholds + 5 factor variances + 10 factor covariances = 255 parameters USED or estimated

Possible = 4950/2 + 494 = 1421 DF =1117 calculation: 1421 – 255 – 49 “residuals” = 1117

Now we can test the fit of a constrained structural model that posits a single higher-order “General Abuse” factor to account for the correlations among these 5 latent factors.

Syntax for IFA model with WLSMV including a higher-order factor instead of 5 correlated factors (“smaller/bigger model”):

NOTE: With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

To test the fit against the saturated (all possible factor correlations model), we direct DIFFTEST on the ANALYSIS command to use the results from the previous model.

ifaHigherSyntax = "
spurn =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54
terror =~ p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56
isolate =~ p01 + p18 + p19 + p23 + p39 + p43
corrupt =~ p09 + p12 + p16 + p20 + p28 + p47 + p50
ignore =~ p02 + p03 + p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57

abuse =~ spurn + terror + isolate + corrupt + ignore
"

ifaHigherEstimates = cfa(model = ifaHigherSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV",
                         ordered = c("p06", "p10", "p14", "p25", "p27", "p29", "p33", "p35", "p48", "p49", "p53", "p54", 
                                     "p07", "p11", "p13", "p17", "p24", "p26", "p36", "p55", "p56", "p01", "p18", "p19", 
                                     "p23", "p39", "p43", "p09", "p12", "p16", "p20", "p28", "p47", "p50", "p02", "p03", 
                                     "p04", "p21", "p22", "p30", "p31", "p37", "p40", "p44", "p45", "p46", "p51", "p52", "p57"))
summary(ifaHigherEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 79 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       250
## 
##   Number of observations                          1335
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              5865.614    5939.652
##   Degrees of freedom                              1122        1122
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.107
##   Shift parameter                                          642.166
##     simple second-order correction (WLSMV)                        
## 
## Model Test Baseline Model:
## 
##   Test statistic                            471778.214   67352.685
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.111
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990       0.927
##   Tucker-Lewis Index (TLI)                       0.989       0.924
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.809
##   Robust Tucker-Lewis Index (TLI)                            0.800
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.056       0.057
##   90 Percent confidence interval - lower         0.055       0.055
##   90 Percent confidence interval - upper         0.058       0.058
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.087
##   90 Percent confidence interval - lower                     0.085
##   90 Percent confidence interval - upper                     0.090
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062       0.062
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   spurn =~                                                              
##     p06               1.000                               0.624    0.624
##     p10               0.798    0.045   17.616    0.000    0.498    0.498
##     p14               1.312    0.047   28.017    0.000    0.819    0.819
##     p25               0.920    0.044   20.724    0.000    0.575    0.575
##     p27               1.033    0.042   24.465    0.000    0.645    0.645
##     p29               1.344    0.047   28.492    0.000    0.839    0.839
##     p33               1.433    0.049   29.170    0.000    0.895    0.895
##     p35               1.125    0.048   23.450    0.000    0.703    0.703
##     p48               1.311    0.059   22.377    0.000    0.819    0.819
##     p49               1.171    0.045   26.230    0.000    0.731    0.731
##     p53               1.213    0.046   26.365    0.000    0.757    0.757
##     p54               1.109    0.044   25.033    0.000    0.692    0.692
##   terror =~                                                             
##     p07               1.000                               0.671    0.671
##     p11               1.159    0.041   28.483    0.000    0.778    0.778
##     p13               1.063    0.048   22.029    0.000    0.714    0.714
##     p17               1.024    0.041   25.035    0.000    0.687    0.687
##     p24               1.187    0.047   25.299    0.000    0.797    0.797
##     p26               1.033    0.043   24.061    0.000    0.693    0.693
##     p36               1.185    0.044   27.243    0.000    0.796    0.796
##     p55               1.075    0.043   25.050    0.000    0.721    0.721
##     p56               1.135    0.040   28.122    0.000    0.762    0.762
##   isolate =~                                                            
##     p01               1.000                               0.688    0.688
##     p18               0.963    0.044   21.836    0.000    0.662    0.662
##     p19               1.171    0.048   24.272    0.000    0.805    0.805
##     p23               0.931    0.042   21.926    0.000    0.641    0.641
##     p39               0.992    0.044   22.627    0.000    0.682    0.682
##     p43               1.095    0.041   26.450    0.000    0.753    0.753
##   corrupt =~                                                            
##     p09               1.000                               0.759    0.759
##     p12               0.904    0.044   20.335    0.000    0.686    0.686
##     p16               0.559    0.043   12.949    0.000    0.424    0.424
##     p20               1.041    0.048   21.474    0.000    0.790    0.790
##     p28               1.085    0.048   22.797    0.000    0.823    0.823
##     p47               1.045    0.041   25.230    0.000    0.793    0.793
##     p50               1.153    0.045   25.642    0.000    0.875    0.875
##   ignore =~                                                             
##     p02               1.000                               0.845    0.845
##     p03               0.874    0.023   38.591    0.000    0.738    0.738
##     p04               0.850    0.022   37.797    0.000    0.718    0.718
##     p21               0.924    0.022   41.432    0.000    0.781    0.781
##     p22               0.800    0.027   29.846    0.000    0.675    0.675
##     p30               0.974    0.021   46.130    0.000    0.822    0.822
##     p31               1.063    0.021   49.527    0.000    0.898    0.898
##     p37               0.955    0.022   43.409    0.000    0.807    0.807
##     p40               1.056    0.021   50.739    0.000    0.892    0.892
##     p44               1.022    0.021   48.578    0.000    0.863    0.863
##     p45               1.008    0.021   46.900    0.000    0.852    0.852
##     p46               1.052    0.021   50.183    0.000    0.888    0.888
##     p51               0.903    0.022   40.254    0.000    0.763    0.763
##     p52               1.000    0.022   46.065    0.000    0.844    0.844
##     p57               1.075    0.021   50.976    0.000    0.908    0.908
##   abuse =~                                                              
##     spurn             1.000                               0.990    0.990
##     terror            1.029    0.050   20.653    0.000    0.948    0.948
##     isolate           1.059    0.055   19.155    0.000    0.951    0.951
##     corrupt           1.025    0.059   17.494    0.000    0.834    0.834
##     ignore            1.209    0.051   23.475    0.000    0.884    0.884
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     p06|t1           -0.751    0.038  -19.725    0.000   -0.751   -0.751
##     p06|t2            0.154    0.034    4.456    0.000    0.154    0.154
##     p06|t3            0.700    0.038   18.635    0.000    0.700    0.700
##     p06|t4            1.513    0.053   28.430    0.000    1.513    1.513
##     p10|t1           -0.312    0.035   -8.929    0.000   -0.312   -0.312
##     p10|t2            0.427    0.035   12.021    0.000    0.427    0.427
##     p10|t3            0.869    0.039   22.005    0.000    0.869    0.869
##     p10|t4            1.568    0.055   28.478    0.000    1.568    1.568
##     p14|t1            0.360    0.035   10.233    0.000    0.360    0.360
##     p14|t2            1.047    0.042   24.855    0.000    1.047    1.047
##     p14|t3            1.446    0.051   28.266    0.000    1.446    1.446
##     p14|t4            2.081    0.081   25.660    0.000    2.081    2.081
##     p25|t1           -0.082    0.034   -2.379    0.017   -0.082   -0.082
##     p25|t2            0.547    0.036   15.089    0.000    0.547    0.547
##     p25|t3            0.916    0.040   22.841    0.000    0.916    0.916
##     p25|t4            1.965    0.073   26.747    0.000    1.965    1.965
##     p27|t1           -0.394    0.035  -11.155    0.000   -0.394   -0.394
##     p27|t2            0.398    0.035   11.264    0.000    0.398    0.398
##     p27|t3            0.888    0.040   22.351    0.000    0.888    0.888
##     p27|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p29|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p29|t2            0.715    0.038   18.948    0.000    0.715    0.715
##     p29|t3            1.090    0.043   25.426    0.000    1.090    1.090
##     p29|t4            1.800    0.065   27.879    0.000    1.800    1.800
##     p33|t1            0.346    0.035    9.853    0.000    0.346    0.346
##     p33|t2            1.063    0.042   25.077    0.000    1.063    1.063
##     p33|t3            1.440    0.051   28.249    0.000    1.440    1.440
##     p33|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p35|t1            0.022    0.034    0.629    0.529    0.022    0.022
##     p35|t2            0.960    0.041   23.561    0.000    0.960    0.960
##     p35|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p35|t4            1.915    0.071   27.140    0.000    1.915    1.915
##     p48|t1            1.047    0.042   24.855    0.000    1.047    1.047
##     p48|t2            1.636    0.058   28.433    0.000    1.636    1.636
##     p48|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p48|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p49|t1            0.265    0.035    7.622    0.000    0.265    0.265
##     p49|t2            0.975    0.041   23.798    0.000    0.975    0.975
##     p49|t3            1.451    0.051   28.284    0.000    1.451    1.451
##     p49|t4            2.151    0.086   24.900    0.000    2.151    2.151
##     p53|t1            0.003    0.034    0.082    0.935    0.003    0.003
##     p53|t2            0.782    0.038   20.341    0.000    0.782    0.782
##     p53|t3            1.275    0.047   27.323    0.000    1.275    1.275
##     p53|t4            1.927    0.071   27.050    0.000    1.927    1.927
##     p54|t1            0.076    0.034    2.215    0.027    0.076    0.076
##     p54|t2            0.637    0.037   17.217    0.000    0.637    0.637
##     p54|t3            0.999    0.041   24.171    0.000    0.999    0.999
##     p54|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p07|t1            0.207    0.035    5.985    0.000    0.207    0.207
##     p07|t2            1.128    0.044   25.892    0.000    1.128    1.128
##     p07|t3            1.549    0.054   28.470    0.000    1.549    1.549
##     p07|t4            2.212    0.091   24.192    0.000    2.212    2.212
##     p11|t1            0.382    0.035   10.830    0.000    0.382    0.382
##     p11|t2            1.060    0.042   25.033    0.000    1.060    1.060
##     p11|t3            1.456    0.051   28.300    0.000    1.456    1.456
##     p11|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p13|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p13|t2            1.658    0.058   28.395    0.000    1.658    1.658
##     p13|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p13|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p17|t1            0.451    0.036   12.670    0.000    0.451    0.451
##     p17|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p17|t3            1.615    0.057   28.459    0.000    1.615    1.615
##     p17|t4            2.234    0.093   23.922    0.000    2.234    2.234
##     p24|t1            1.009    0.041   24.310    0.000    1.009    1.009
##     p24|t2            1.904    0.070   27.226    0.000    1.904    1.904
##     p24|t3            2.433    0.114   21.310    0.000    2.433    2.433
##     p24|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p26|t1           -0.468    0.036  -13.101    0.000   -0.468   -0.468
##     p26|t2            0.813    0.039   20.952    0.000    0.813    0.813
##     p26|t3            1.242    0.046   27.049    0.000    1.242    1.242
##     p26|t4            1.870    0.068   27.460    0.000    1.870    1.870
##     p36|t1            0.587    0.037   16.050    0.000    0.587    0.587
##     p36|t2            1.242    0.046   27.049    0.000    1.242    1.242
##     p36|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p36|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p55|t1            0.253    0.035    7.295    0.000    0.253    0.253
##     p55|t2            0.700    0.038   18.635    0.000    0.700    0.700
##     p55|t3            1.002    0.041   24.218    0.000    1.002    1.002
##     p55|t4            1.790    0.064   27.927    0.000    1.790    1.790
##     p56|t1            0.114    0.034    3.309    0.001    0.114    0.114
##     p56|t2            0.651    0.037   17.533    0.000    0.651    0.651
##     p56|t3            0.945    0.041   23.323    0.000    0.945    0.945
##     p56|t4            1.772    0.063   28.015    0.000    1.772    1.772
##     p01|t1            0.836    0.039   21.406    0.000    0.836    0.836
##     p01|t2            1.575    0.055   28.478    0.000    1.575    1.575
##     p01|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p01|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p18|t1           -0.416    0.035  -11.751    0.000   -0.416   -0.416
##     p18|t2            0.294    0.035    8.439    0.000    0.294    0.294
##     p18|t3            0.826    0.039   21.205    0.000    0.826    0.826
##     p18|t4            1.495    0.053   28.399    0.000    1.495    1.495
##     p19|t1            0.899    0.040   22.548    0.000    0.899    0.899
##     p19|t2            1.525    0.054   28.447    0.000    1.525    1.525
##     p19|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p19|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p23|t1           -0.334    0.035   -9.527    0.000   -0.334   -0.334
##     p23|t2            0.616    0.037   16.740    0.000    0.616    0.616
##     p23|t3            1.254    0.046   27.154    0.000    1.254    1.254
##     p23|t4            2.097    0.082   25.486    0.000    2.097    2.097
##     p39|t1            0.717    0.038   19.000    0.000    0.717    0.717
##     p39|t2            1.696    0.060   28.301    0.000    1.696    1.696
##     p39|t3            2.049    0.079   25.978    0.000    2.049    2.049
##     p39|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p43|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p43|t2            1.202    0.045   26.684    0.000    1.202    1.202
##     p43|t3            1.673    0.059   28.362    0.000    1.673    1.673
##     p43|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p09|t1            0.908    0.040   22.695    0.000    0.908    0.908
##     p09|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p09|t3            2.151    0.086   24.900    0.000    2.151    2.151
##     p09|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p12|t1            0.589    0.037   16.103    0.000    0.589    0.589
##     p12|t2            1.809    0.065   27.829    0.000    1.809    1.809
##     p12|t3            2.133    0.085   25.107    0.000    2.133    2.133
##     p12|t4            2.398    0.110   21.788    0.000    2.398    2.398
##     p16|t1            0.196    0.035    5.658    0.000    0.196    0.196
##     p16|t2            0.963    0.041   23.609    0.000    0.963    0.963
##     p16|t3            1.360    0.049   27.889    0.000    1.360    1.360
##     p16|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p20|t1            1.478    0.052   28.361    0.000    1.478    1.478
##     p20|t2            2.034    0.078   26.124    0.000    2.034    2.034
##     p20|t3            2.191    0.090   24.444    0.000    2.191    2.191
##     p20|t4            2.674    0.150   17.852    0.000    2.674    2.674
##     p28|t1            1.210    0.045   26.759    0.000    1.210    1.210
##     p28|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p28|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p28|t4            2.282    0.098   23.321    0.000    2.282    2.282
##     p47|t1            0.724    0.038   19.156    0.000    0.724    0.724
##     p47|t2            1.370    0.049   27.941    0.000    1.370    1.370
##     p47|t3            1.754    0.062   28.094    0.000    1.754    1.754
##     p47|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p50|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p50|t2            1.849    0.067   27.596    0.000    1.849    1.849
##     p50|t3            2.081    0.081   25.660    0.000    2.081    2.081
##     p50|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p02|t1            0.789    0.039   20.494    0.000    0.789    0.789
##     p02|t2            1.650    0.058   28.409    0.000    1.650    1.650
##     p02|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p02|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p03|t1            0.209    0.035    6.040    0.000    0.209    0.209
##     p03|t2            1.111    0.043   25.682    0.000    1.111    1.111
##     p03|t3            1.594    0.056   28.474    0.000    1.594    1.594
##     p03|t4            1.978    0.074   26.636    0.000    1.978    1.978
##     p04|t1            0.213    0.035    6.149    0.000    0.213    0.213
##     p04|t2            1.168    0.044   26.337    0.000    1.168    1.168
##     p04|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p04|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p21|t1            0.251    0.035    7.240    0.000    0.251    0.251
##     p21|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p21|t3            1.688    0.060   28.323    0.000    1.688    1.688
##     p21|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p22|t1           -0.007    0.034   -0.191    0.848   -0.007   -0.007
##     p22|t2            0.756    0.038   19.828    0.000    0.756    0.756
##     p22|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p22|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p30|t1            0.046    0.034    1.340    0.180    0.046    0.046
##     p30|t2            1.080    0.043   25.296    0.000    1.080    1.080
##     p30|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p30|t4            2.019    0.077   26.263    0.000    2.019    2.019
##     p31|t1            0.312    0.035    8.929    0.000    0.312    0.312
##     p31|t2            1.292    0.047   27.452    0.000    1.292    1.292
##     p31|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p31|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p37|t1            0.350    0.035    9.962    0.000    0.350    0.350
##     p37|t2            1.414    0.050   28.150    0.000    1.414    1.414
##     p37|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p37|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p40|t1            0.466    0.036   13.048    0.000    0.466    0.466
##     p40|t2            1.310    0.047   27.577    0.000    1.310    1.310
##     p40|t3            1.763    0.063   28.056    0.000    1.763    1.763
##     p40|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p44|t1            0.095    0.034    2.762    0.006    0.095    0.095
##     p44|t2            1.305    0.047   27.546    0.000    1.305    1.305
##     p44|t3            1.870    0.068   27.460    0.000    1.870    1.870
##     p44|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p45|t1            0.807    0.039   20.851    0.000    0.807    0.807
##     p45|t2            1.615    0.057   28.459    0.000    1.615    1.615
##     p45|t3            2.171    0.088   24.679    0.000    2.171    2.171
##     p45|t4            2.612    0.139   18.749    0.000    2.612    2.612
##     p46|t1            0.356    0.035   10.124    0.000    0.356    0.356
##     p46|t2            1.319    0.048   27.637    0.000    1.319    1.319
##     p46|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p46|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p51|t1            0.330    0.035    9.418    0.000    0.330    0.330
##     p51|t2            1.009    0.041   24.310    0.000    1.009    1.009
##     p51|t3            1.467    0.052   28.332    0.000    1.467    1.467
##     p51|t4            2.049    0.079   25.978    0.000    2.049    2.049
##     p52|t1            0.016    0.034    0.465    0.642    0.016    0.016
##     p52|t2            0.852    0.039   21.707    0.000    0.852    0.852
##     p52|t3            1.323    0.048   27.667    0.000    1.323    1.323
##     p52|t4            2.034    0.078   26.124    0.000    2.034    2.034
##     p57|t1            0.600    0.037   16.369    0.000    0.600    0.600
##     p57|t2            1.467    0.052   28.332    0.000    1.467    1.467
##     p57|t3            2.019    0.077   26.263    0.000    2.019    2.019
##     p57|t4            2.282    0.098   23.321    0.000    2.282    2.282
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               0.610                               0.610    0.610
##    .p10               0.752                               0.752    0.752
##    .p14               0.329                               0.329    0.329
##    .p25               0.670                               0.670    0.670
##    .p27               0.584                               0.584    0.584
##    .p29               0.295                               0.295    0.295
##    .p33               0.199                               0.199    0.199
##    .p35               0.506                               0.506    0.506
##    .p48               0.330                               0.330    0.330
##    .p49               0.465                               0.465    0.465
##    .p53               0.426                               0.426    0.426
##    .p54               0.520                               0.520    0.520
##    .p07               0.550                               0.550    0.550
##    .p11               0.395                               0.395    0.395
##    .p13               0.491                               0.491    0.491
##    .p17               0.528                               0.528    0.528
##    .p24               0.366                               0.366    0.366
##    .p26               0.520                               0.520    0.520
##    .p36               0.367                               0.367    0.367
##    .p55               0.480                               0.480    0.480
##    .p56               0.420                               0.420    0.420
##    .p01               0.527                               0.527    0.527
##    .p18               0.561                               0.561    0.561
##    .p19               0.352                               0.352    0.352
##    .p23               0.590                               0.590    0.590
##    .p39               0.535                               0.535    0.535
##    .p43               0.433                               0.433    0.433
##    .p09               0.424                               0.424    0.424
##    .p12               0.529                               0.529    0.529
##    .p16               0.820                               0.820    0.820
##    .p20               0.376                               0.376    0.376
##    .p28               0.322                               0.322    0.322
##    .p47               0.371                               0.371    0.371
##    .p50               0.234                               0.234    0.234
##    .p02               0.287                               0.287    0.287
##    .p03               0.455                               0.455    0.455
##    .p04               0.484                               0.484    0.484
##    .p21               0.391                               0.391    0.391
##    .p22               0.544                               0.544    0.544
##    .p30               0.324                               0.324    0.324
##    .p31               0.194                               0.194    0.194
##    .p37               0.349                               0.349    0.349
##    .p40               0.205                               0.205    0.205
##    .p44               0.255                               0.255    0.255
##    .p45               0.275                               0.275    0.275
##    .p46               0.211                               0.211    0.211
##    .p51               0.418                               0.418    0.418
##    .p52               0.287                               0.287    0.287
##    .p57               0.176                               0.176    0.176
##    .spurn             0.008    0.004    2.118    0.034    0.021    0.021
##    .terror            0.046    0.006    7.117    0.000    0.101    0.101
##    .isolate           0.045    0.008    5.523    0.000    0.096    0.096
##    .corrupt           0.175    0.016   10.865    0.000    0.304    0.304
##    .ignore            0.155    0.012   12.647    0.000    0.218    0.218
##     abuse             0.382    0.026   14.614    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.390
##     p10               0.248
##     p14               0.671
##     p25               0.330
##     p27               0.416
##     p29               0.705
##     p33               0.801
##     p35               0.494
##     p48               0.670
##     p49               0.535
##     p53               0.574
##     p54               0.480
##     p07               0.450
##     p11               0.605
##     p13               0.509
##     p17               0.472
##     p24               0.634
##     p26               0.480
##     p36               0.633
##     p55               0.520
##     p56               0.580
##     p01               0.473
##     p18               0.439
##     p19               0.648
##     p23               0.410
##     p39               0.465
##     p43               0.567
##     p09               0.576
##     p12               0.471
##     p16               0.180
##     p20               0.624
##     p28               0.678
##     p47               0.629
##     p50               0.766
##     p02               0.713
##     p03               0.545
##     p04               0.516
##     p21               0.609
##     p22               0.456
##     p30               0.676
##     p31               0.806
##     p37               0.651
##     p40               0.795
##     p44               0.745
##     p45               0.725
##     p46               0.789
##     p51               0.582
##     p52               0.713
##     p57               0.824
##     spurn             0.979
##     terror            0.899
##     isolate           0.904
##     corrupt           0.696
##     ignore            0.782
anova(ifaNoHighEstimates, ifaHigherEstimates)
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan->lavTestLRT():  
##    lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
##    robust test that should be reported per model. A robust difference test is 
##    a function of two standard (not robust) statistics.
##                      Df AIC BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## ifaNoHighEstimates 1117         5673.9                                  
## ifaHigherEstimates 1122         5865.6     92.069       5  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As it turns out, lavaan returns an error for the model comparison, so we cannot be certain of which is better. The Mplus example showed the higher order trait did not fit as well as the general model.

Syntax and output for IFA model with WLSMV including only a single factor (“smallest model”)

We can try one more alternative – what if the items were measuring a single factor (i.e., a single score)?

ifaSingleSyntax = "
abuse =~ p06 + p10 + p14 + p25 + p27 + p29 + p33 + p35 + p48 + p49 + p53 + p54 + 
         p07 + p11 + p13 + p17 + p24 + p26 + p36 + p55 + p56 + p01 + p18 + p19 + 
         p23 + p39 + p43 + p09 + p12 + p16 + p20 + p28 + p47 + p50 + p02 + p03 + 
         p04 + p21 + p22 + p30 + p31 + p37 + p40 + p44 + p45 + p46 + p51 + p52 + p57
"

ifaSingleEstimates = cfa(model = ifaSingleSyntax, data = abuseData, std.lv = FALSE, mimic = "mplus", estimator = "WLSMV",
                         ordered = c("p06", "p10", "p14", "p25", "p27", "p29", "p33", "p35", "p48", "p49", "p53", "p54", 
                                     "p07", "p11", "p13", "p17", "p24", "p26", "p36", "p55", "p56", "p01", "p18", "p19", 
                                     "p23", "p39", "p43", "p09", "p12", "p16", "p20", "p28", "p47", "p50", "p02", "p03", 
                                     "p04", "p21", "p22", "p30", "p31", "p37", "p40", "p44", "p45", "p46", "p51", "p52", "p57"))
summary(ifaSingleEstimates, fit.measures = TRUE, rsquare = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 57 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       245
## 
##   Number of observations                          1335
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              8446.686    7562.120
##   Degrees of freedom                              1127        1127
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.229
##   Shift parameter                                          687.463
##     simple second-order correction (WLSMV)                        
## 
## Model Test Baseline Model:
## 
##   Test statistic                            471778.214   67352.685
##   Degrees of freedom                              1176        1176
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.111
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.984       0.903
##   Tucker-Lewis Index (TLI)                       0.984       0.899
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.729
##   Robust Tucker-Lewis Index (TLI)                            0.717
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.070       0.065
##   90 Percent confidence interval - lower         0.068       0.064
##   90 Percent confidence interval - upper         0.071       0.067
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.104
##   90 Percent confidence interval - lower                     0.102
##   90 Percent confidence interval - upper                     0.106
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.073       0.073
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   abuse =~                                                              
##     p06               1.000                               0.605    0.605
##     p10               0.797    0.045   17.547    0.000    0.483    0.483
##     p14               1.310    0.047   27.940    0.000    0.793    0.793
##     p25               0.919    0.045   20.630    0.000    0.556    0.556
##     p27               1.033    0.042   24.416    0.000    0.625    0.625
##     p29               1.342    0.047   28.420    0.000    0.812    0.812
##     p33               1.425    0.049   29.161    0.000    0.862    0.862
##     p35               1.118    0.048   23.533    0.000    0.677    0.677
##     p48               1.306    0.059   22.326    0.000    0.791    0.791
##     p49               1.170    0.045   26.144    0.000    0.708    0.708
##     p53               1.208    0.046   26.355    0.000    0.731    0.731
##     p54               1.108    0.045   24.896    0.000    0.671    0.671
##     p07               1.042    0.050   20.905    0.000    0.631    0.631
##     p11               1.206    0.051   23.802    0.000    0.730    0.730
##     p13               1.108    0.064   17.239    0.000    0.670    0.670
##     p17               1.068    0.049   21.591    0.000    0.647    0.647
##     p24               1.234    0.064   19.345    0.000    0.747    0.747
##     p26               1.076    0.043   25.098    0.000    0.651    0.651
##     p36               1.236    0.049   25.288    0.000    0.748    0.748
##     p55               1.122    0.044   25.667    0.000    0.679    0.679
##     p56               1.186    0.045   26.163    0.000    0.718    0.718
##     p01               1.059    0.054   19.479    0.000    0.641    0.641
##     p18               1.022    0.041   24.990    0.000    0.619    0.619
##     p19               1.243    0.054   23.209    0.000    0.753    0.753
##     p23               0.988    0.044   22.269    0.000    0.598    0.598
##     p39               1.052    0.055   19.165    0.000    0.637    0.637
##     p43               1.159    0.045   25.616    0.000    0.702    0.702
##     p09               1.059    0.059   17.845    0.000    0.641    0.641
##     p12               0.959    0.055   17.588    0.000    0.581    0.581
##     p16               0.585    0.051   11.429    0.000    0.354    0.354
##     p20               1.113    0.070   15.991    0.000    0.674    0.674
##     p28               1.169    0.064   18.183    0.000    0.707    0.707
##     p47               1.106    0.058   19.033    0.000    0.670    0.670
##     p50               1.230    0.065   18.870    0.000    0.745    0.745
##     p02               1.351    0.056   24.292    0.000    0.817    0.817
##     p03               1.175    0.047   25.096    0.000    0.711    0.711
##     p04               1.146    0.048   24.076    0.000    0.694    0.694
##     p21               1.246    0.049   25.354    0.000    0.754    0.754
##     p22               1.068    0.043   24.814    0.000    0.646    0.646
##     p30               1.319    0.049   26.715    0.000    0.798    0.798
##     p31               1.449    0.051   28.545    0.000    0.877    0.877
##     p37               1.289    0.051   25.413    0.000    0.780    0.780
##     p40               1.437    0.052   27.821    0.000    0.870    0.870
##     p44               1.384    0.049   28.386    0.000    0.837    0.837
##     p45               1.355    0.054   25.302    0.000    0.820    0.820
##     p46               1.435    0.052   27.352    0.000    0.868    0.868
##     p51               1.221    0.048   25.611    0.000    0.739    0.739
##     p52               1.348    0.045   29.932    0.000    0.816    0.816
##     p57               1.466    0.051   28.559    0.000    0.887    0.887
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     p06|t1           -0.751    0.038  -19.725    0.000   -0.751   -0.751
##     p06|t2            0.154    0.034    4.456    0.000    0.154    0.154
##     p06|t3            0.700    0.038   18.635    0.000    0.700    0.700
##     p06|t4            1.513    0.053   28.430    0.000    1.513    1.513
##     p10|t1           -0.312    0.035   -8.929    0.000   -0.312   -0.312
##     p10|t2            0.427    0.035   12.021    0.000    0.427    0.427
##     p10|t3            0.869    0.039   22.005    0.000    0.869    0.869
##     p10|t4            1.568    0.055   28.478    0.000    1.568    1.568
##     p14|t1            0.360    0.035   10.233    0.000    0.360    0.360
##     p14|t2            1.047    0.042   24.855    0.000    1.047    1.047
##     p14|t3            1.446    0.051   28.266    0.000    1.446    1.446
##     p14|t4            2.081    0.081   25.660    0.000    2.081    2.081
##     p25|t1           -0.082    0.034   -2.379    0.017   -0.082   -0.082
##     p25|t2            0.547    0.036   15.089    0.000    0.547    0.547
##     p25|t3            0.916    0.040   22.841    0.000    0.916    0.916
##     p25|t4            1.965    0.073   26.747    0.000    1.965    1.965
##     p27|t1           -0.394    0.035  -11.155    0.000   -0.394   -0.394
##     p27|t2            0.398    0.035   11.264    0.000    0.398    0.398
##     p27|t3            0.888    0.040   22.351    0.000    0.888    0.888
##     p27|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p29|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p29|t2            0.715    0.038   18.948    0.000    0.715    0.715
##     p29|t3            1.090    0.043   25.426    0.000    1.090    1.090
##     p29|t4            1.800    0.065   27.879    0.000    1.800    1.800
##     p33|t1            0.346    0.035    9.853    0.000    0.346    0.346
##     p33|t2            1.063    0.042   25.077    0.000    1.063    1.063
##     p33|t3            1.440    0.051   28.249    0.000    1.440    1.440
##     p33|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p35|t1            0.022    0.034    0.629    0.529    0.022    0.022
##     p35|t2            0.960    0.041   23.561    0.000    0.960    0.960
##     p35|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p35|t4            1.915    0.071   27.140    0.000    1.915    1.915
##     p48|t1            1.047    0.042   24.855    0.000    1.047    1.047
##     p48|t2            1.636    0.058   28.433    0.000    1.636    1.636
##     p48|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p48|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p49|t1            0.265    0.035    7.622    0.000    0.265    0.265
##     p49|t2            0.975    0.041   23.798    0.000    0.975    0.975
##     p49|t3            1.451    0.051   28.284    0.000    1.451    1.451
##     p49|t4            2.151    0.086   24.900    0.000    2.151    2.151
##     p53|t1            0.003    0.034    0.082    0.935    0.003    0.003
##     p53|t2            0.782    0.038   20.341    0.000    0.782    0.782
##     p53|t3            1.275    0.047   27.323    0.000    1.275    1.275
##     p53|t4            1.927    0.071   27.050    0.000    1.927    1.927
##     p54|t1            0.076    0.034    2.215    0.027    0.076    0.076
##     p54|t2            0.637    0.037   17.217    0.000    0.637    0.637
##     p54|t3            0.999    0.041   24.171    0.000    0.999    0.999
##     p54|t4            1.712    0.061   28.251    0.000    1.712    1.712
##     p07|t1            0.207    0.035    5.985    0.000    0.207    0.207
##     p07|t2            1.128    0.044   25.892    0.000    1.128    1.128
##     p07|t3            1.549    0.054   28.470    0.000    1.549    1.549
##     p07|t4            2.212    0.091   24.192    0.000    2.212    2.212
##     p11|t1            0.382    0.035   10.830    0.000    0.382    0.382
##     p11|t2            1.060    0.042   25.033    0.000    1.060    1.060
##     p11|t3            1.456    0.051   28.300    0.000    1.456    1.456
##     p11|t4            2.115    0.084   25.302    0.000    2.115    2.115
##     p13|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p13|t2            1.658    0.058   28.395    0.000    1.658    1.658
##     p13|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p13|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p17|t1            0.451    0.036   12.670    0.000    0.451    0.451
##     p17|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p17|t3            1.615    0.057   28.459    0.000    1.615    1.615
##     p17|t4            2.234    0.093   23.922    0.000    2.234    2.234
##     p24|t1            1.009    0.041   24.310    0.000    1.009    1.009
##     p24|t2            1.904    0.070   27.226    0.000    1.904    1.904
##     p24|t3            2.433    0.114   21.310    0.000    2.433    2.433
##     p24|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p26|t1           -0.468    0.036  -13.101    0.000   -0.468   -0.468
##     p26|t2            0.813    0.039   20.952    0.000    0.813    0.813
##     p26|t3            1.242    0.046   27.049    0.000    1.242    1.242
##     p26|t4            1.870    0.068   27.460    0.000    1.870    1.870
##     p36|t1            0.587    0.037   16.050    0.000    0.587    0.587
##     p36|t2            1.242    0.046   27.049    0.000    1.242    1.242
##     p36|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p36|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p55|t1            0.253    0.035    7.295    0.000    0.253    0.253
##     p55|t2            0.700    0.038   18.635    0.000    0.700    0.700
##     p55|t3            1.002    0.041   24.218    0.000    1.002    1.002
##     p55|t4            1.790    0.064   27.927    0.000    1.790    1.790
##     p56|t1            0.114    0.034    3.309    0.001    0.114    0.114
##     p56|t2            0.651    0.037   17.533    0.000    0.651    0.651
##     p56|t3            0.945    0.041   23.323    0.000    0.945    0.945
##     p56|t4            1.772    0.063   28.015    0.000    1.772    1.772
##     p01|t1            0.836    0.039   21.406    0.000    0.836    0.836
##     p01|t2            1.575    0.055   28.478    0.000    1.575    1.575
##     p01|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p01|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p18|t1           -0.416    0.035  -11.751    0.000   -0.416   -0.416
##     p18|t2            0.294    0.035    8.439    0.000    0.294    0.294
##     p18|t3            0.826    0.039   21.205    0.000    0.826    0.826
##     p18|t4            1.495    0.053   28.399    0.000    1.495    1.495
##     p19|t1            0.899    0.040   22.548    0.000    0.899    0.899
##     p19|t2            1.525    0.054   28.447    0.000    1.525    1.525
##     p19|t3            1.881    0.069   27.386    0.000    1.881    1.881
##     p19|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p23|t1           -0.334    0.035   -9.527    0.000   -0.334   -0.334
##     p23|t2            0.616    0.037   16.740    0.000    0.616    0.616
##     p23|t3            1.254    0.046   27.154    0.000    1.254    1.254
##     p23|t4            2.097    0.082   25.486    0.000    2.097    2.097
##     p39|t1            0.717    0.038   19.000    0.000    0.717    0.717
##     p39|t2            1.696    0.060   28.301    0.000    1.696    1.696
##     p39|t3            2.049    0.079   25.978    0.000    2.049    2.049
##     p39|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p43|t1            0.033    0.034    0.957    0.338    0.033    0.033
##     p43|t2            1.202    0.045   26.684    0.000    1.202    1.202
##     p43|t3            1.673    0.059   28.362    0.000    1.673    1.673
##     p43|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p09|t1            0.908    0.040   22.695    0.000    0.908    0.908
##     p09|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p09|t3            2.151    0.086   24.900    0.000    2.151    2.151
##     p09|t4            2.748    0.164   16.777    0.000    2.748    2.748
##     p12|t1            0.589    0.037   16.103    0.000    0.589    0.589
##     p12|t2            1.809    0.065   27.829    0.000    1.809    1.809
##     p12|t3            2.133    0.085   25.107    0.000    2.133    2.133
##     p12|t4            2.398    0.110   21.788    0.000    2.398    2.398
##     p16|t1            0.196    0.035    5.658    0.000    0.196    0.196
##     p16|t2            0.963    0.041   23.609    0.000    0.963    0.963
##     p16|t3            1.360    0.049   27.889    0.000    1.360    1.360
##     p16|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p20|t1            1.478    0.052   28.361    0.000    1.478    1.478
##     p20|t2            2.034    0.078   26.124    0.000    2.034    2.034
##     p20|t3            2.191    0.090   24.444    0.000    2.191    2.191
##     p20|t4            2.674    0.150   17.852    0.000    2.674    2.674
##     p28|t1            1.210    0.045   26.759    0.000    1.210    1.210
##     p28|t2            1.688    0.060   28.323    0.000    1.688    1.688
##     p28|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p28|t4            2.282    0.098   23.321    0.000    2.282    2.282
##     p47|t1            0.724    0.038   19.156    0.000    0.724    0.724
##     p47|t2            1.370    0.049   27.941    0.000    1.370    1.370
##     p47|t3            1.754    0.062   28.094    0.000    1.754    1.754
##     p47|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p50|t1            1.150    0.044   26.137    0.000    1.150    1.150
##     p50|t2            1.849    0.067   27.596    0.000    1.849    1.849
##     p50|t3            2.081    0.081   25.660    0.000    2.081    2.081
##     p50|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p02|t1            0.789    0.039   20.494    0.000    0.789    0.789
##     p02|t2            1.650    0.058   28.409    0.000    1.650    1.650
##     p02|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p02|t4            2.433    0.114   21.310    0.000    2.433    2.433
##     p03|t1            0.209    0.035    6.040    0.000    0.209    0.209
##     p03|t2            1.111    0.043   25.682    0.000    1.111    1.111
##     p03|t3            1.594    0.056   28.474    0.000    1.594    1.594
##     p03|t4            1.978    0.074   26.636    0.000    1.978    1.978
##     p04|t1            0.213    0.035    6.149    0.000    0.213    0.213
##     p04|t2            1.168    0.044   26.337    0.000    1.168    1.168
##     p04|t3            1.940    0.072   26.954    0.000    1.940    1.940
##     p04|t4            2.336    0.103   22.620    0.000    2.336    2.336
##     p21|t1            0.251    0.035    7.240    0.000    0.251    0.251
##     p21|t2            1.275    0.047   27.323    0.000    1.275    1.275
##     p21|t3            1.688    0.060   28.323    0.000    1.688    1.688
##     p21|t4            2.191    0.090   24.444    0.000    2.191    2.191
##     p22|t1           -0.007    0.034   -0.191    0.848   -0.007   -0.007
##     p22|t2            0.756    0.038   19.828    0.000    0.756    0.756
##     p22|t3            1.351    0.049   27.836    0.000    1.351    1.351
##     p22|t4            2.171    0.088   24.679    0.000    2.171    2.171
##     p30|t1            0.046    0.034    1.340    0.180    0.046    0.046
##     p30|t2            1.080    0.043   25.296    0.000    1.080    1.080
##     p30|t3            1.531    0.054   28.454    0.000    1.531    1.531
##     p30|t4            2.019    0.077   26.263    0.000    2.019    2.019
##     p31|t1            0.312    0.035    8.929    0.000    0.312    0.312
##     p31|t2            1.292    0.047   27.452    0.000    1.292    1.292
##     p31|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p31|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p37|t1            0.350    0.035    9.962    0.000    0.350    0.350
##     p37|t2            1.414    0.050   28.150    0.000    1.414    1.414
##     p37|t3            1.915    0.071   27.140    0.000    1.915    1.915
##     p37|t4            2.366    0.106   22.223    0.000    2.366    2.366
##     p40|t1            0.466    0.036   13.048    0.000    0.466    0.466
##     p40|t2            1.310    0.047   27.577    0.000    1.310    1.310
##     p40|t3            1.763    0.063   28.056    0.000    1.763    1.763
##     p40|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p44|t1            0.095    0.034    2.762    0.006    0.095    0.095
##     p44|t2            1.305    0.047   27.546    0.000    1.305    1.305
##     p44|t3            1.870    0.068   27.460    0.000    1.870    1.870
##     p44|t4            2.308    0.100   22.985    0.000    2.308    2.308
##     p45|t1            0.807    0.039   20.851    0.000    0.807    0.807
##     p45|t2            1.615    0.057   28.459    0.000    1.615    1.615
##     p45|t3            2.171    0.088   24.679    0.000    2.171    2.171
##     p45|t4            2.612    0.139   18.749    0.000    2.612    2.612
##     p46|t1            0.356    0.035   10.124    0.000    0.356    0.356
##     p46|t2            1.319    0.048   27.637    0.000    1.319    1.319
##     p46|t3            1.809    0.065   27.829    0.000    1.809    1.809
##     p46|t4            2.258    0.096   23.633    0.000    2.258    2.258
##     p51|t1            0.330    0.035    9.418    0.000    0.330    0.330
##     p51|t2            1.009    0.041   24.310    0.000    1.009    1.009
##     p51|t3            1.467    0.052   28.332    0.000    1.467    1.467
##     p51|t4            2.049    0.079   25.978    0.000    2.049    2.049
##     p52|t1            0.016    0.034    0.465    0.642    0.016    0.016
##     p52|t2            0.852    0.039   21.707    0.000    0.852    0.852
##     p52|t3            1.323    0.048   27.667    0.000    1.323    1.323
##     p52|t4            2.034    0.078   26.124    0.000    2.034    2.034
##     p57|t1            0.600    0.037   16.369    0.000    0.600    0.600
##     p57|t2            1.467    0.052   28.332    0.000    1.467    1.467
##     p57|t3            2.019    0.077   26.263    0.000    2.019    2.019
##     p57|t4            2.282    0.098   23.321    0.000    2.282    2.282
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .p06               0.634                               0.634    0.634
##    .p10               0.767                               0.767    0.767
##    .p14               0.371                               0.371    0.371
##    .p25               0.690                               0.690    0.690
##    .p27               0.609                               0.609    0.609
##    .p29               0.340                               0.340    0.340
##    .p33               0.256                               0.256    0.256
##    .p35               0.542                               0.542    0.542
##    .p48               0.375                               0.375    0.375
##    .p49               0.498                               0.498    0.498
##    .p53               0.465                               0.465    0.465
##    .p54               0.550                               0.550    0.550
##    .p07               0.602                               0.602    0.602
##    .p11               0.468                               0.468    0.468
##    .p13               0.551                               0.551    0.551
##    .p17               0.582                               0.582    0.582
##    .p24               0.442                               0.442    0.442
##    .p26               0.576                               0.576    0.576
##    .p36               0.440                               0.440    0.440
##    .p55               0.539                               0.539    0.539
##    .p56               0.484                               0.484    0.484
##    .p01               0.589                               0.589    0.589
##    .p18               0.617                               0.617    0.617
##    .p19               0.434                               0.434    0.434
##    .p23               0.642                               0.642    0.642
##    .p39               0.595                               0.595    0.595
##    .p43               0.508                               0.508    0.508
##    .p09               0.589                               0.589    0.589
##    .p12               0.663                               0.663    0.663
##    .p16               0.875                               0.875    0.875
##    .p20               0.546                               0.546    0.546
##    .p28               0.500                               0.500    0.500
##    .p47               0.552                               0.552    0.552
##    .p50               0.445                               0.445    0.445
##    .p02               0.332                               0.332    0.332
##    .p03               0.494                               0.494    0.494
##    .p04               0.519                               0.519    0.519
##    .p21               0.431                               0.431    0.431
##    .p22               0.582                               0.582    0.582
##    .p30               0.363                               0.363    0.363
##    .p31               0.231                               0.231    0.231
##    .p37               0.391                               0.391    0.391
##    .p40               0.243                               0.243    0.243
##    .p44               0.299                               0.299    0.299
##    .p45               0.327                               0.327    0.327
##    .p46               0.246                               0.246    0.246
##    .p51               0.454                               0.454    0.454
##    .p52               0.334                               0.334    0.334
##    .p57               0.213                               0.213    0.213
##     abuse             0.366    0.025   14.584    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     p06               0.366
##     p10               0.233
##     p14               0.629
##     p25               0.310
##     p27               0.391
##     p29               0.660
##     p33               0.744
##     p35               0.458
##     p48               0.625
##     p49               0.502
##     p53               0.535
##     p54               0.450
##     p07               0.398
##     p11               0.532
##     p13               0.449
##     p17               0.418
##     p24               0.558
##     p26               0.424
##     p36               0.560
##     p55               0.461
##     p56               0.516
##     p01               0.411
##     p18               0.383
##     p19               0.566
##     p23               0.358
##     p39               0.405
##     p43               0.492
##     p09               0.411
##     p12               0.337
##     p16               0.125
##     p20               0.454
##     p28               0.500
##     p47               0.448
##     p50               0.555
##     p02               0.668
##     p03               0.506
##     p04               0.481
##     p21               0.569
##     p22               0.418
##     p30               0.637
##     p31               0.769
##     p37               0.609
##     p40               0.757
##     p44               0.701
##     p45               0.673
##     p46               0.754
##     p51               0.546
##     p52               0.666
##     p57               0.787

NOTE: With respect to fit of the structural model, we are now fitting a single factor INSTEAD OF 5 factors and a higher-order factor. This will tell us the extent to which a single score is appropriate.

To test the fit against the higher-order factor model, we direct DIFFTEST on the ANALYSIS command to use the results from the previous model.

anova(ifaSingleEstimates, ifaNoHighEstimates)
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan->lavTestLRT():  
##    lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
##    robust test that should be reported per model. A robust difference test is 
##    a function of two standard (not robust) statistics.
##                      Df AIC BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## ifaNoHighEstimates 1117         5673.9                                  
## ifaSingleEstimates 1127         8446.7     769.18      10  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, lavaan throws an error. We’ll use the Mplus result in our write up below.

Example results section for CFA using MLR

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. Each factor was identified by fixing the first item loading on each factor to 1, estimating the factor variance, and then fixing the factor mean to 0, while estimating all possible item intercepts, item residual variances, and remaining item loadings. Robust maximum likelihood (MLR) estimation was used to estimate all higher-order models using the lavaan package (Rosseel, 2012) in R (R Core Team, 2017), and differences in fit between nested models were evaluated using −2* rescaled difference in the model log-likelihood values.

As shown in Table 1, the fit of the model with five correlated factors was acceptable by the RMSEA (.047), but not by the CFI (.844). Standardized model parameters (loadings, intercepts, and residual variances) are shown in Table 2. Correlations of .6 or higher were found among the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained marginal (see Table 1), a nested model comparison revealed a significant decrease in fit, −2ΔLL(5) = 47.083, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlation amongst the five factors. A further nested model comparison was conducted to examine the extent to which a single factor could describe the covariances among the items rather than five lower-order factors and a single higher-order factor. Fit of the single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, −2ΔLL(5) = 448.91, p < .0001, indicating that a single “total score” would not be recommended.

Example results section for IFA using WLMSV

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. Each factor was identified by fixing the first item loading on each factor to 1, estimating the factor variance, and then fixing the factor mean to 0, while estimating all possible item thresholds (four for each item given five response options) and remaining item loadings. WLSMV estimation in the lavaan package (Rosseel, 2012) in R (R Core Team, 2017) including a probit link and the THETA parameterization (such that all item residual variances were constrained to 1) was used to estimate all higher-order models. Thus, model fit statistics describe the fit of the item factor model to the polychoric correlation matrix among the items. Nested model comparisons were conducted using the Mplus DIFFTEST procedure.

As shown in Table 1, the fit of the model with five correlated factors was acceptable. Item factor analysis parameters (loadings and thresholds) and their corresponding item response model parameters (discriminations and difficulties) are shown in Table 2. Correlations of .7 or higher were found amongst the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained acceptable (see Table 1), a nested model comparison via the DIFFTEST procedure revealed a significant decrease in fit, DIFFTEST(5) = 92.05, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlation amongst the five factors. A further nested model comparison was conducted to examine the extent to which a single factor could describe the polychoric correlations among the items rather than five lower-order factors and a single higher-order factor. Fit of the single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, DIFFTEST(5) = 611.95, p < .0001, indicating that a single score would not be recommended.

Table 1 = table with fit info per model Table 2 would have actual model parameters…. (unstandardized and standardized estimates and their SEs, so 4 columns)